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In loving memory of Boicho Kokinov
who introduced me to cognitive science
and taught me how to be a scientist





In Memoriam

Boicho Kokinov (1960–2013)

This book is dedicated to my teacher, Ph.D. advisor, and dear friend Boicho Koki-
nov. He is the author of the AMBR model described in the book and was working
on the Afterword at the time of his sudden and premature death. The fatal blow
that stopped Boicho’s noble hearth also opened a deep wound in the hearts of the
hundreds of people whose lives were enriched by this remarkable man.

Boicho Nikolov Kokinov was a Bulgarian scientist who led the development of
cognitive science in Eastern Europe after the end of the Cold War. He was:

• Co-founder and president of the Bulgarian Cognitive Science Society
• Member of the governing board of the [worldwide] Cognitive Science Society
• Co-founder and vice-rector of New Bulgarian University (NBU)
• Co-founder and director of the Department of Cognitive Science and Psychology

at NBU
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• Co-founder and director of the Central and East European Center for Cognitive
Science at NBU

• Founder and director of the Annual International Summer School in Cognitive
Science at NBU

• Co-organizer of numerous conferences in workshops in Bulgaria and Europe
• Member of the editorial board of various scientific journals and grant panels.

In addition, he has authored over 70 peer-reviewed publications, edited several
books, and advised over a dozen graduate students.

Boicho was a deep and original thinker. This book describes one of his scientific
contributions. His true passion, however, was building communities of people. He
cared deeply about the common good and had a remarkable gift to inspire every-
one who met him. Boicho was a great teacher and an effective leader who worked
tirelessly to reform the higher-education system in Bulgaria and to establish and
promote cognitive science in Eastern Europe.

The focal point of this effort is New Bulgarian University—an institution to
which Boicho devoted 20 years of his career. He played a major role in the es-
tablishment and accreditation of NBU as a whole and especially the Department of
Cognitive Science and Psychology and the associated Central and East European
Center for Cognitive Science. Founded in 1991, New Bulgarian University intro-
duced for the first time in Bulgaria a model of higher education that emphasizes
student choice, flexible program requirements based on credit hours, and close inte-
gration into the international academic community. These features are widely used
in Western Europe and North America but contrast sharply with the rigid curric-
ula of the traditional state-owned Bulgarian universities. Boicho was a vocal and
eloquent proponent of the new system and under his leadership the Department of
Cognitive Science and Psychology became (and still is) one of the strongest and
most successful departments at NBU.

The Annual International Summer School in Cognitive Science showcases Boi-
cho’s exceptional community-building skills. He organized the first such school in
1994 with no funding and minimal institutional support from an immature university
that did not even have its own building at the time. Through his personal connec-
tions and with no resources other than his individual charisma and the sheer power
of persuasion, Boicho convinced a few prominent scientists to travel to Sofia at their
own expense, pay for their hotel and food, and teach an intensive course for free! I
was among the students at this first school and remember vividly the sense of ex-
citement we had at the opportunity to partake in science at this highest level. For
their part, the instructors said they had never met such an enthusiastic group of stu-
dents and that our interactions were very stimulating for them too. And so the idea
caught on, carefully nurtured by Boicho’s astute leadership. With each consecutive
year, the prestige of the summer school—and that of the Cognitive Science Center
at NBU with it—grew steadily. The list of speakers swelled to a virtual catalog of
the preeminent figures in cognitive science. For example, as of 2013 it includes four
Rumelhart Prize winners. Thus people are only half-joking when they say, “Now
that I am invited to the Bulgarian Summer School, I know I have finally made a
name for myself.”
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Boicho was beloved by all. That is why the sudden news of his fatal heart attack
on May 10th, 2013, sent shockwaves not only at NBU but throughout the cognitive
science community worldwide. An email avalanche ensued, expressing first disbe-
lief, then shock, and finally sadness and appreciation of his contributions. Com-
memorative sessions were held at the Cognitive Science Conference in Berlin and
the Analogy Conference in Dijon later that year. As the study of analogy-making
had been a major focus of Boicho’s research interests throughout his career, his
departure was felt especially strongly in the tightly knit community of analogy re-
searchers. He had published extensively on the topic, edited several collections of
articles, and hosted both the First (1998) and Second (2009) International Confer-
ences on Analogy. All analogy researchers knew him well and—consequently and
predictably—liked him and were inspired by him. The Third (2013) Conference
was dedicated to him by an unanimous decision of the Program Committee. At the
meeting itself, nearly all speakers began their presentations by sharing memories
and expressing their admiration for him. The conference ended with two minutes of
silence in his honor. Boicho is sorely missed by all.

New Bulgarian University honored his beloved co-founder with the academic
equivalent of a state funeral. Hundreds of people attended the memorial service
and there was an outpouring of sadness, admiration, gratitude, and recognition of
Boicho’s achievements and personality. The entire university leadership was in at-
tendance, including the Rector, all Deans, and many members of the Governing
Board. The Department of Psychology cancelled all classes on that day. Practically
all faculty members and many staff members attended the service. There were also
at least 150 students—graduate and undergraduate, past and present. United in their
grief and heartfelt love for Boicho, it was not uncommon for students to cry on
the shoulders of their professors and vice versa. Everybody without exception ex-
pressed their gratitude and admiration for Boicho. Remarkably many people stated
in no uncertain terms that their lives had been transformed by him in one way or
another, always for the better.

I count myself in that number. My life was profoundly affected by my appren-
ticeship and friendship with Boicho. It was from his lips that I heard the phrase
“cognitive science” for the first time in my life, approximately 20 years ago. Had
it not been for him, I might well have ended up in some other scientific discipline
or even left academia altogether. He taught me how to be a scientist and, more im-
portantly, how to be an upright person. Boicho’s legacy includes dozens of students
with stories similar to mine. Many of his former students are now faculty at NBU or
various universities throughout Europe, US, and Canada. His many colleagues and
collaborators were affected in no less profound ways.

One of the special gifts that Boicho bestowed upon me was the opportunity to
observe and absorb his attitude towards life. He always strove to make the world
a better place and to help his fellow travelers along the way. Where other people
would complain, make excuses or accusations, Boicho would always say, “Let’s do
something about that. Will you help me?” The effects were spectacular. Deep down,
this is why so many people loved him so much. He was always there on the front
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line, ready to help, ready to shoulder most of the burden. This is what made him
such an effective and inspiring leader.

Even though his life was cut tragically short, he accomplished more in 52 years
than most people ever accomplish. It is absolutely, undisputedly true that Boicho left
the world a far better place than he found it. NBU, the cognitive science community,
and hundreds of individuals are in his debt.

His was a life well lived.
Rest in peace, dearest Boicho. We will carry the torch forward and strive to be

worthy of your generous gifts.

Sofia, Bulgaria Alexander A. Petrov
August 2013



Preface

This book is based on my Ph.D. thesis, which was completed in July 1998 under the
supervision of Dr. Boicho Kokinov at the New Bulgarian University (NBU) in Sofia,
Bulgaria. The book describes a cognitive model of analogy-making developed in an
effort to understand the mental processes that take place when a person perceives
one situation as structurally similar to another. The model is called AMBR and is
based on a hybrid symbolic-connectionist cognitive architecture called DUAL. Both
DUAL and AMBR were proposed by Boicho Kokinov in the late 1980s and are still
in active development. I joined the AMBR research group in the early 1990s as a
graduate student in cognitive science at NBU.

I could not have asked for a better doctoral advisor than Boicho. He lavished his
time and attention on me throughout my studies at NBU. We had countless conver-
sations, discussing every single idea in this book. DUAL and AMBR are Boicho’s
creations and he should have been listed as first author. With his usual grace and
modesty, however, he declined to have his name appear on the title page. This book
is dedicated to him in appreciation of his mentorship, friendship, and support. Un-
fortunately, Boicho did not live long enough to see the published book but he did
see the complete draft.

This book documents the status of the AMBR project as of 1998. I have re-
sisted the temptation to revise the original dissertation text too much, although I did
smooth out the roughest edges, particularly in Chapter 2 and Section 5.7. A new Af-
terword traces the development of DUAL and AMBR after 1998, whereas a lengthy
new postscript to Chapter 2 provides pointers to the recent analogy-modeling lit-
erature at large. Appendix C is also new. The number of bibliographic references
has more than tripled. Of course all faults in the text are entirely my responsibility.
Corrections for errors discovered after the book goes to print will be posted on my
personal web site, http://alexpetrov.com.

Although my research took a different turn after my graduation from NBU, I
always kept a keen interest in analogy-making and followed the developments in
this field. Cognitive science has advanced considerably in the intervening 15 years.
Cognitive neuroscience in particular has made great strides and today we can incor-
porate much stronger neurological constraints into our models compared to 1998.
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I am currently developing an analogy-making model that is a neural network quite
different from AMBR. But this is a story for another book.

This is a book about AMBR — a treasure trove of Boicho’s original ideas. AMBR
definitely deserves careful study and is of potential interest to cognitive modelers
and cognitive scientists more generally. Graduate students can use the text as an
example of one possible way to write a Ph.D. thesis. Current members of the AMBR
research group may be interested to learn about a precursor of their work.

I give heartfelt thanks to all who contributed to the work described here. To Boi-
cho, first and foremost and always — Thank you! I am forever in your debt and I
will cherish the memory of you as long as I live. Rest in peace, my dear friend. To
my professors and colleagues at the Central and Eastern European Center for Cog-
nitive Science at NBU, who taught me so much and supported me in every way. As
they are too many to enumerate here in full, I will single out just two names — En-
cho Gerganov and Vassil Nikolov. To Bob French, whose book about the Tabletop
model was never far from my desk while I was writing my thesis. Thank you, Bob,
for the stimulating discussions and for your hospitality in the summer of 1996. To
the members of my Dissertation Committee, who made time in their busy schedules
during the First Analogy Conference in July 1998 to read and comment upon a long
thesis — Kenneth Forbus, Dedre Gentner, Keith Holyoak, John Hummel, Pentti
Kanerva, Zdravko Markov, and Naum Yakimoff (chair). Thank you for your good
will and encouragement. Your feedback and recommendations are now incorporated
into the text. To Alexander Doumas, Keith Holyoak, John Hummel, Andrew Lovett,
and Robert Morrison, for their critical comments on the Postscript to Chapter 2.
To Georgi Petkov, who rose to the occasion and wrote the Afterword that Boicho
meant to write but could not. To my mother and in loving memory of my father,
who nurtured me with constant devotion and who were my first and most important
teachers. Last but not least, very special thanks to my wonderful wife Petya and my
adorable daughter Vicky.

Columbus, Ohio, USA Alexander A. Petrov
October 2013
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Chapter 1
Introduction

1.1 Motivation

The key intuition underlying the research presented in this dissertation is that the
mechanisms giving rise to human analogy-making are central to cognition. Analogy
is not just a specific technique for problem solving and argumentation occasionally
called upon when the more reliable methods such as deduction and proof do not
work. As we view it, analogy is a manifestation of the fundamental cognitive ability
to relate new information to old knowledge and to flexibly manipulate both until
they fit into a harmonious whole. As such, it highlights a number of issues that are
absolutely central to cognition in general—the organization of memory, manipula-
tion of complex structured representations, dynamic relevance, flexible allocation of
resources, perception and categorization, generalization, learning, etc. Research on
analogy, therefore, transcends the boundaries of the specific phenomenon and goes
deeply into the core of intelligence.

The main instrument for the research presented in this book in the methodol-
ogy of cognitive modeling. The aim is to analyze analogy-making in computational
terms and to construct a working artifact in the form of a computer program. The
behavior of the model is then compared to empirical data collected by psychological
experimentation. The criterion for success is whether the model contributes to our
theoretical understanding of the hidden mechanisms of human cognition.

This book describes a computational cognitive model called AMBR (Associative
Memory-Based Reasoning). It provides a detailed account of its mechanisms and
demonstrates its operation by reporting the results of numerous simulation exper-
iments performed with a computer implementation of the model. Throughout the
book, an attempt has been made to formulate the implications of AMBR for our un-
derstanding of human cognition as well as to compare it to other models presented
in the literature.

The research reported here is part of a larger research project launched by Boi-
cho Kokinov approximately ten years ago (Kokinov, 1988, 1990, 1994a; Kokinov,
Nikolov, & Petrov, 1996; Kokinov & Hadjiilieva, 1997; Kokinov, 1998). The long-

1
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term goal of the project is to give a unified account of deductive, inductive, and
analogical reasoning by realizing them with the same set of mechanisms.

As analogy is in a sense representative of cognition in general, a model of
analogy-making should be based on a full-fledged cognitive architecture. We do not
expect that a small “analogy machine” based on a few simple assumptions could
explain such complex phenomenon. Neither do we expect that this could be done by
some all-encompassing “magic formula.” Instead, we conceptualize analogy as an
emergent product of the collective effort of many interdependent mechanisms. The
claim is that these same mechanisms can be used for other cognitive tasks too. As
a consequence, modeling analogy-making requires a solution to a number of issues
about knowledge representation, organization of memory, allocation of computa-
tional resources, perception, etc.

AMBR is based on a cognitive architecture that is a first step towards this very
distant goal. The architecture DUAL (Kokinov, 1994a,b,c) provides a framework for
building dynamic emergent computational models of cognitive phenomena. AMBR
is one such model.

1.2 Main Ideas of Dual and Ambr

1.2.1 Overview of Dual

DUAL is a general-purpose cognitive architecture that comprises a unified descrip-
tion of mental representation, memory structures, and processing mechanisms. All
these aspects of the architecture are organized around the principles of hybridity,
emergent computation, dynamics, and context sensitivity.

DUAL is hybrid—it consists of complementary aspects. Moreover, it is hybrid in
two ways. On one hand, it hinges upon the symbolic/connectionist distinction and
the integration between the two. On the other, there is the declarative/procedural
distinction and integration thereof. DUAL is also emergent, dynamic, and context-
sensitive. All processing and knowledge representation in the architecture is carried
out by small entities called Dual agents. There is no central executive that con-
trols the whole system, allocates resources, resolves conflicts, etc. Instead, there are
small-scale DUAL agents and local interactions between them. The global behavior
of the system emerges from the self-organizing pattern of these interactions. An im-
portant feature of DUAL’s operation is that it is constantly changing in response to
influences from the environment. This is possible due to the emergent nature of the
processing and the lack of rigid centrally imposed algorithm.

In a little more detail, each DUAL agent is a hybrid entity serving both represen-
tational and processing purposes. Each agent is relatively simple and has access only
to local information, interacting with a few neighboring agents. It has a micro-frame
storing declarative and procedural knowledge. Its symbolic processor can perform
simple manipulation on symbols (discrete compositional entities) and to pass them



1.2 Main Ideas of Dual and Ambr 3

to other agents. The complementary aspect of the processor is engaged in spread-
ing activation (continuous additive quantity) between agents. Thus they can also be
conceptualized as nodes in a network.

The speed of the symbolic processing performed by a given DUAL agent depends
on its activation level. Active agents work rapidly, less active agents work slowly,
and inactive agents do not work at all. In this way, each agent contributes to the
overall computation in the system to a different extent. As activation levels change
continuously, the speed of the symbolic processing changes accordingly. This is a
key factor for the dynamic emergent computation that is characteristic of DUAL.

The long-term memory of the architecture consists of the total population of all
permanent DUAL agents. The active subset of them plus some temporary agents
constitute the working memory of the system. The contents of the working memory
changes dynamically, reflecting changes in the environment and the internal course
of computation. This is another factor for flexibility and context-sensibility.

1.2.2 Main Ideas of Ambr

AMBR is a dynamic emergent model built on the basis of DUAL. In its general form
it is conceived as an integrated model of deductive, inductive, and analogical rea-
soning (Kokinov, 1988). All three kinds of reasoning are viewed as slightly different
versions of a single uniform reasoning process. The overall approach is that reason-
ing establishes correspondences between two problems, schemes, or situations, and
transfers some elements from one to the other, with due modification. The model
explains deduction, induction, and analogy in terms of the relationships between the
two descriptions that happen to be put in correspondence in each particular case.
In this way, analogy can be viewed as the most general case, with deduction and
generalization at the two extremes—where the source and the target are related in a
special way, one of them being a specific instance of the other.

The research reported in this book concentrates on analogy-making. Therefore,
AMBR is presented and discussed here as a model of analogy-making regardless of
the fact that some of the considerations may have broader scope.

The models of analogy-making typically decompose it into separate “stages” or
“phases.” For example, one possible decomposition includes: (i) representation of
the target problem, (ii) retrieval of a source analog from memory, (iii) mapping
the two descriptions, (iv) transfer from the source to the target, (v) evaluation of
the analogical inferences, and (vi) learning and generalization. Some researchers
(e.g., Forbus et al., 1998; Gentner, 1989) argue that the stages of analogy-making
are relatively independent and thus are susceptible to piecemeal exploration. Others
(e.g., Chalmers, French, & Hofstadter, 1992) oppose this view claiming that the
process of analogy-making is inseparable in principle because of the high degree of
interdependence among its components.

AMBR agrees with the second position. In this model the components of analogy-
making are conceptualized as subprocesses that overlap in time and influence each
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other. The long-term goal of the AMBR project is to develop an integrated model
of all these subprocesses on the uniform foundation of DUAL. At present, however,
only two of them are implemented in detail. The version of AMBR that is reported
in this book is an integrated model of analogical access and mapping. These two
subprocesses and the computational mechanisms that implement them in the model
are discussed in detail. Special emphasis is put on the ways that they can interact
and on the dynamic emergent nature of the computations.

Another feature of AMBR that is central to this book is that the model uses de-
centralized representations of situations.1 Each DUAL agent is relatively simple and
cannot represent much. Therefore, a whole coalition of agents is needed for the
representation of each episode, schema, or even proposition. AMBR coalitions are
emergent and have fuzzy boundaries. The members of a given coalition can come
in or out of it dynamically and to participate in it with varying intensity. There is
no centralized data structure enumerating all agents belonging to a coalition. This
allows for greater flexibility and integration of the various subprocesses of analogy-
making. In particular, the mapping process can begin before the whole coalition is
accessed from memory. The correspondences established by the active elements of
a situation can then influence the activation of their coalition partners. As a conse-
quence, the episodes that better map to the target tend to be preferentially accessed.
This organization has a number of advantages that are discussed in the book.

The current version of the model relies on six computational mechanisms to carry
out the tasks within its scope. These are: (i) spreading activation, (ii) marker pass-
ing, (iii) constraint satisfaction, (iv) structure correspondence, (v) rating, and (vi)
skolemization. Each of them serves a concrete function in the model. Spreading ac-
tivation defines the working memory of the system, provides dynamic estimates of
the relevance of each item, serves as a power supply for the symbolic processing,
and underlies the relaxation of the network constructed by the constraint satisfaction
mechanism. Marker passing is used for assessing semantic similarity, inheritance of
properties, and carries out various information needed by other mechanisms. It also
provides justifications for some of the hypotheses used by the constraint satisfaction
mechanism. The latter underlies the process of mapping two structured descriptions
and is a major instrument for achieving global consistency of the local activities in
the model. The structure correspondence mechanism provides additional justifica-
tions for new hypotheses and dynamically modifies the topology of the constraint
satisfaction network. The rating mechanism is responsible for promoting winner
correspondences and for elimination of losers. Finally, skolemization uses general
semantic knowledge to augment the description of a situation upon necessity.

1 This term should not be confused with the distributed representations in neural networks.
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1.3 The Ambr Family

Ambr is not the name of a single model but a generic name of a whole succession
of models. Each of them builds upon the previous one and takes a few steps further
in the long-term project. The major milestones along this road are the following:

Kokinov (1988) puts forth the conjecture that deduction, induction, and analogy
can be conceptualized as different manifestations of a uniform reasoning process
and gives it the name Associative Memory-Based Reasoning. An associative mech-
anism using spreading activation is proposed for the purposes of memory retrieval
and estimation of relevance. The knowledge representation scheme is detailed in
(Kokinov, 1989).

Kokinov (1994a) presents a much more elaborate version of AMBR. It will be
denoted AMBR1 when reference to the particular version is important. It adopts
Holyoak and Thagard’s (1989) constraint satisfaction mechanism for the purposes
of the mapping process. Unlike its precursor, however, the constraint satisfaction
network (CSN) in AMBR1 is constructed dynamically by the joint operation of the
marker passing and structure correspondence mechanisms. The CSN is integrated
with the long-term memory of the model, which allows for interactions between the
different subprocesses in analogy-making. AMBR1 uses centralized representation
of situations—there is a frame containing a slot for each situation element.

Kokinov (1994a,b,c) also singles out the architecture DUAL as something dif-
ferent from the specific model AMBR. The main architectural principles of DUAL
are established: multi-agent approach (Minsky, 1986), lack of central executive, hy-
bridization at the micro-level, dynamic emergent computation, context sensitivity,
etc. There is a computer implementation of the architecture and the model. It is used
for simulation experiments.

In a M.Sc. thesis supervised by Boicho Kokinov, Petrov (1997) develops a de-
tailed specification of DUAL and resolves some ambiguities of the original proposal.
An exact and general mechanism for determining symbolic processor’s speed on the
basis of the activation level is specified. The connectionist aspect is identified as an
energy supplier for the symbolic one. The notion of coalitions and the meso-level
of description are explicated. A new portable implementation of the architecture is
developed in Common Lisp (Steele, 1990) with CLOS (Keene, 1989).

There are improvements of AMBR too. This version of the model (Petrov, 1997)
is denoted AMBR2A. It introduces decentralized representations of episodes and
designs the machinery for maintaining them. In particular, there are secretaries that
register the hypotheses for each element and assist the construction of the constraint
satisfaction network. The activation function of AMBR1 is replaced with a better
one. The knowledge base is expanded considerably and more extensive simulation
experiments are performed.

Petrov’s (1998) Ph.D. thesis extends the model further. The 1998 version2 is de-
noted AMBR2 and is the one described in this book. The machinery for analogical

2 When it is important to differentiate between the 1997 and 1998 versions, they are denoted
AMBR2A and AMBR2B, respectively. Typically, however, we denote them collectively as AMBR2.
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mapping is specified in full. The mapping process can identify winner correspon-
dences, thus setting the stage for the transfer process. New mechanisms for using
semantic knowledge for augmenting the description of episodes are added to the
model. The existing mechanisms and the computer implementation are improved
and extended. The knowledge base is enlarged considerably, both by elaborating the
existing descriptions and by adding new concepts and episodes. This larger knowl-
edge base is used for new simulation experiments.

1.4 Outline of the Book

The subsequent chapters are summarized as follows:
Chapter 2 — Background — reviews some empirical data about analogy-making

reported in the literature. It also presents briefly a selection of models and discusses
their strengths and weaknesses.

Chapter 3 — AMBR in Broad Strokes — presents a concise and relatively self-
contained description of the cognitive architecture DUAL and the model AMBR2.

Chapter 4 — Knowledge Representation — describes the knowledge representa-
tion scheme in detail. It contrasts the advantages and disadvantages of centralized
and decentralized representation of situations. It also introduces the domain used for
the simulation experiments.

Chapter 5 — AMBR Mechanisms at Work — provides a rigorous and systematic
description of current AMBR mechanisms. The operation of the model is illustrated
on a concrete example by showing how the mechanisms apply to a particular target
problem. The chapter contains diagrams and transcripts from actual program runs.

Chapter 6 — Simulation Experiments — reports results of simulation experi-
ments involving ten target problems and more than 1200 runs of the program. These
data are used to compare qualitatively the performance of AMBR with the regulari-
ties observed in human analogy-making.

Chapter 7 — Possibilities for Future Extensions of AMBR — discusses the lim-
itations of the current version and suggests ways in which the model could be ex-
tended in the future. In particular, it gives some ideas about modeling the subpro-
cess of analogical transfer. Also, it introduces a research project aimed at adding
perceptual capabilities to DUAL and AMBR. Finally, it presents the TEXTSCREEN
micro-domain that can be used as a testbed for this project.

Chapter 8 — Conclusion — concludes the book with a summary of its main
points and a discussion of the contributions of this project.

A new Afterword traces the AMBR development after 1998.
Appendix A provides a sample of full-fledged agent definitions.
Appendix B gives simplified propositional representations of all episodes used in

the experiments.
Appendix C describes the exact relationship between symbolic speed and con-

nectionist activation in DUAL. It also outlines the “suspendable” extension of Lisp
that we developed to implement variable-speed symbolic computations.



Chapter 2
Background

2.1 The Phenomenon of Analogy

Analogy has been the focus of much cognitive research. (For reviews1 see Gen-
tner, 1989; Goshwami, 1992; Holyoak & Thagard, 1995; Keane, 1988). Still, there
is no universally accepted definition. Michalski (1989) explained analogy as a su-
perposition of induction and deduction. By contrast, Holyoak and his collaborators
(Gick & Holyoak, 1983; Holyoak & Thagard, 1995; Hummel & Holyoak, 1996)
considered schema induction as a consequence of a successful analogy. There are,
however, some ideas that have received widespread support. The following excerpt
from Gentner (1989, p. 201) provides a starting point:

Analogy is a mapping of knowledge from one domain (the base) into another (the target),
which conveys that a system of relations that holds among the base objects also holds among
the target objects. Thus, an analogy is a way of focusing on relational commonalties inde-
pendently of the objects in which those relations are embedded.

The importance of structure, or system of relations, has been demonstrated in
many studies (Gentner & Landers, 1985; Gentner & Toupin, 1986; Clement & Gen-
tner, 1991). Objects from the two situations are seen as counterparts when they ful-
fill similar roles in the respective relational structure. The degree of this structural
overlap or quasihomomorphism (Holland et al., 1986; Holyoak & Thagard, 1989)
determines to a large extent the soundness of an analogy. Central to the mapping
process is the principle of systematicity: People prefer to map connected systems
of relations governed by higher-order relations with inferential import rather than
isolated predicates (Gentner, 1983, 1989).

Analogy-making involves a mapping process that aligns structured descriptions
of the two episodes and establishes a set of correspondences. There does not need
to be any resemblance between individual elements of the two descriptions. Vari-
ous theorists have suggested, however, and empirical evidence confirms, that object

1 Most references in this chapter are to sources published prior to 1998. Section 2.2.6 provides
pointers to the more recent literature.
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and predicate semantic similarity influence the mapping process, with high similar-
ity leading to greater ease of mapping (Gentner & Toupin, 1986; Holyoak & Koh,
1987; Ross, 1987). This is especially clearly seen when objects and roles are “cross
mapped” (Gentner & Toupin, 1986; Ross, 1987, 1989).

Semantic similarity is much more important for analog access—the process of
finding and accessing a suitable analog from long-term memory. There is consid-
erable evidence that this process relies more on semantic commonalties and less
on structural commonalties than mapping does. For instance, people often fail to ac-
cess potentially useful analogs if they have too little semantic overlap with the target
problem (Gick & Holyoak, 1980, 1983; Ross, 1989). Spontaneous analogies from
remote domains seem especially difficult (Seifert, McKoon, Abelson, & Ratcliff,
1986; Keane, 1987).

The multiconstraint theory of Holyoak and Thagard (1989, 1995) is an influential
synthesis of these and many other experimental findings. According to this theory,
analogy-making is governed by a combination of the following three constraints: (i)
structural consistency—the pressure to identify and use an isomorphism between
the descriptions of the two situations, (ii) semantic similarity—the pressure to map
elements with some prior semantic similarity (e.g., joint membership in a seman-
tic category), (iii) pragmatic centrality—the pressure to give preference to elements
that are deemed especially important to goal attainment, and to try to maintain cor-
respondences that can be presumed on the basis of prior knowledge. All three con-
straints are conceptualized as “soft”—they do not operate as inviolable rules but
rather as competing pressures (Hofstadter, 1984).

According to the multiconstraint theory, all three constraints play a role through-
out the course of analogy-making (Thagard, Holyoak, Nelson, & Gochfeld, 1990;
Holyoak & Thagard, 1995). However, the constraints affect the different subpro-
cesses to a different degree. Thus, semantic similarity seems to dominate the analog
access but the other two constraints also play a role. Structural consistency exerts
its major impact in the mapping process. Later stages of analogy-making are very
sensitive to pragmatic pressures. More specifically, they are very important during
analogical inference (or transfer) and evaluation—the processes of augmenting the
target description and verifying the consistency of the inferences.

There are a number of other factors that also influence the course of analogy-
making. For example, there is evidence for an order effect on analogical mapping
(Keane, 1994). It is faster and more accurate when the order of presenting the tar-
get elements to the subject encourages a correct initial correspondence, which can
then constrain subsequent mappings. There is also evidence for priming effects on
analogy-making (and problem solving in general, Kokinov, 1990, 1994a). In these
experiments, exposure and work on selected problems affected the performance on
a later problem. The magnitude of this effect decreased with time. Other data from
the same lab (Kokinov & Yoveva, 1996; Kokinov, Hadjiilieva, & Yoveva, 1997)
indicate context effects on problem solving.

All these empirical findings must be taken into account when building and eval-
uating cognitive models of analogy-making. The following section presents a brief
overview of some of these models.
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2.2 Models of Analogy-Making

Analogy-making is a very complex phenomenon and it is very difficult to encompass
all of it at once. As a consequence, most models in the field could be characterized
by the ancient maxim “Divide and conquer!” That is, analogy-making is usually
conceptualized in terms of separate stages or phases. While this book advocates a
different and more interactionist approach, this conceptualization is necessary for
expository purposes. Thus, one possible division includes:

• Perception (representation building) of the target problem;
• Retrieval of an appropriate analog (or base) from long-term memory;
• Mapping the base onto the target to find corresponding elements;
• Transfer of knowledge from the base to the target;
• Evaluation of the imported knowledge within the target framework;
• Learning and generalizing the new experience for use in the future.

These stages are supposed to be relatively independent from one another and thus
susceptible to piecemeal exploration. Different researchers focused their attention
on different aspects of analogy-making, each building a model that highlights some
issues at the expense of others.

In contrast, the AMBR project advocates the strategy of integration. This does not
mean that we overlook the time-honored “Divide and conquer!” On the contrary, we
think it has given rise to quite a lot of knowledge which could (and should) serve
as a springboard for any further research. Out of the many models reported in the
literature (Anderson & Thompson, 1989; Carbonell, 1983; Evans, 1968; Halford,
Wilson, & Phillips, 1998; Hall, 1989; Holland, Holyoak, Nisbett, & Thagard, 1986;
Kedar-Cabelli, 1988; Kolodner, 1993; Veloso, 1994), the following sections discuss
those which have directly influenced our work.

2.2.1 SME and MAC/FAC

The Structure Mapping Engine (Falkenhainer, Forbus & Gentner, 1986, 1989; For-
bus & Oblinger, 1990; Forbus, Ferguson, & Gentner, 1994) is a computer imple-
mentation of Dedre Gentner’s Structure Mapping Theory (1983). It is designed as
a domain-independent analogical matcher. It takes two inputs: a base description
and a target description. Both are in predicate calculus. SME relies on purely syn-
tactic operations to produce a set of correspondences. The underlying intuition is
that syntax can capture meaning. The model uses semantic knowledge only insofar
as it distinguishes identical from non-identical symbols and never mixes symbols
of different types. Entities (individual objects and constants) are mapped onto other
entities, functions onto functions, and relations onto relations. Special priority is
given to higher order relations, thereby operationalizing the systematicity principle
postulated by the theory.
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A serious limitation of the model is that it depends on identicality of predicate
names. In the widespread version of the program, the matching algorithm requires
that the predicates at the top of the relational structure are identical. These local
matches are then recursively expanded to subordinate levels of the structure. Thus,
the identicality restriction applies most forcefully precisely at the level which is
most important according to the theory—the high order relations.

The shortcomings of the identicality restriction became apparent when SME was
used as a building block for bigger systems (Falkenhainer, 1988, 1990a). Subsequent
versions of the Mapping Engine (Falkenhainer, 1990a) have relaxed this restriction
by applying minimal ascension through an is-a hierarchy and/or using role infor-
mation (i.e., the dependencies which a given element satisfies). In our view, these are
important improvements. Still, most applications of SME reported in the literature
(e.g., Forbus, Gentner, & Law, 1994) use the “default” rigid identicality.

More generally, the weakness of SME is that it relies very heavily on the form
of the represented knowledge. For instance, the model differentiates between at-
tributes and relations.2 Yet, the only difference is that attributes are predicates with
one argument while relations have two or more. Logically, each attribute can eas-
ily be transformed into an equivalent relation and vice versa, e.g., hot(X) ↔
temperature-of(X,high). SME thus requires that some other part of the
system represents (and, perhaps, iteratively re-represents) the two situations in a
common representational format (Forbus, Gentner, Markman, & Ferguson, 1998).
There have been numerous demonstrations that SME can, in fact, operate as a mod-
ule in large reasoning systems (e.g., Falkenhainer, 1988, 1990b; see Forbus, 2001,
and Forbus et al., 1998, for reviews). More research is needed to clarify the interface
between a putative analogy module and the rest of cognition.

Despite its limitations, the Structure Mapping Theory and SME are very influen-
tial pioneering work and their importance cannot be questioned. Gentner (1983) was
the first to advocate that analogy depends on structure in a period when all kinds of
similarities were explained by feature overlap (Tversky, 1977). Nowadays the im-
portance of structure and systematicity is taken for granted. In general, the essence
of a situation—the part that should be mapped—is a high-level coherent whole, not
a collection of isolated low-level similarities.

SME is a key component of the MAC/FAC model of similarity-based retrieval
(Forbus, Gentner, & Law, 1994). The model explains retrieval in terms of a two-
stage process. During the first (MAC) stage, a cheap filter is used to weed out the
majority of episodes in long-term memory. This filter calculates dot products over
content vectors—flat enumerations of the functors participating in the respective
episode description. The second (FAC) stage then takes the output of MAC and
subjects the candidates to more expensive processing. It uses SME to assess the
structural overlap between the candidate and the probe. Selection in both cases is
based on comparing numerical scores against predefined thresholds.

2 The original version of SME (e.g., Falkenhainer, Forbus & Gentner, 1986) ignored attributes
altogether. This is no longer the case in the current version. Also, the “modes” defined in the early
publications are eliminated. Now SME always operates in what used to be called “literal similarity
mode.” (Kenneth Forbus, personal communication, July 1998.)
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This computational scheme has a number of engineering advantages. It also ac-
counts for several behavioral phenomena regarding analog access (Forbus et al.,
1994). However, it is questionable whether the cognitive system uses two different
representations for each memory item. One obvious problem that arises in such dual
representation scheme is how to maintain consistency between the two representa-
tions of the same episode. Moreover, both representations seem too rigid and static.
As argued later in this book (e.g., section 4.5), such centralized representations of
situations cannot explain well the flexibility of analog access.

It is not clear how MAC/FAC could account for the context and priming effects in
analogy-making (Kokinov, 1994a; Kokinov & Petrov, 2001). SME and MAC/FAC
are context-sensitive insofar as their operation depends on the contents of working
memory, which in turn can depend on context (Kenneth Forbus, personal communi-
cation, July 1998). This is a valid point but WM content by itself does not suffice to
account for the multiplicity of context influences on human cognition. For example,
items that are only related by association but do not participate in shared predicates
will be ignored by SME even if they are present in WM. Such associations can play
an important role in memory access (e.g., Godden & Baddeley, 1975).

2.2.2 IAM

The Incremental Analogy Machine (Keane & Brayshaw, 1988; Keane, Ledgeway,
& Duff, 1994) is another model of the mapping stage in analogy-making. It starts by
identifying a seed group in the base situation and picks up a seed element from that
group. It is similar to SME in many respects and is subject to the same limitations.
For instance, IAM relies on syntactic criteria for choosing the seeds. The seed group
is the group of predicates having the most higher order connectivity between its ele-
ments. The seed element is sought among the relations that take multiple arguments.

The main idea of the model is to establish a seed match relating the seed element
to some target element and then use this match to incrementally grow a whole set
of coherent matches. The match rules that carry out this task are sensitive to the
structural, semantic, and pragmatic constraints on analogical mapping. The seed is
used for disambiguation of ambivalent cases. All decisions are made sequentially,
which requires backtracking when a commitment is inappropriate.

The backtracking algorithm allows IAM to work in limited working memory and
produces order effects. Both properties are psychologically desirable (Keane et al,
1994). On the other hand, backtracking amounts to exhaustive search which casts
doubts on IAM’s abilities to scale up. It seems to us that mapping should be done as
a combination of sequential and parallel processes.
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2.2.3 ACME and ARCS

The Analogical Constraint Mapping Engine (ACME, Holyoak & Thagard, 1989) is
another influential pioneering model. It is an important precursor of AMBR. ACME
introduced the notion of constraint satisfaction to the analogy literature. The model
uses a massively parallel connectionist algorithm to find a globally consistent set of
correspondences between the two descriptions being mapped. The main idea is to
build a constraint satisfaction network (CSN) with nodes representing hypothetical
correspondences and positive and negative links enforcing the constraints. After a
relaxation process, the network settles in a state representing a (potentially subopti-
mal) solution to the constraint satisfaction problem.

Like the models discussed above, ACME starts with a propositional description
of the two situations. It then translates these representations in connectionist terms
using a centralized symbolic algorithm. There is no genuine interaction between the
symbolic and connectionist components. Therefore, ACME can be considered as a
precursor of hybrid models but in itself it does not constitute such a model.

A weakness of the model is that it constructs too many hypotheses—all elements
from the target are paired with all elements from the base, with the restriction that
objects must map to objects, one-place predicates to one-place predicates, etc. Most
of these hypotheses are completely implausible and have to be suppressed later. In
addition, the size of the resulting network is too demanding for the working memory
of the system (Keane et al., 1994; Kokinov, 1994a; Halford, Wilson, & Phillips,
1998; Hofstadter, 1995; Hummel & Holyoak, 1997).

ACME has other limitations that are discussed at various places in this book. Still,
the idea of constraint satisfaction has been adopted in AMBR and is the foundation
of one of its main mechanisms. The model has certainly influenced our work. There
are many differences between the two models, however, as presented in detail in
section 5.4.1.

A complementary model—ARCS (Analog Retrieval by Constraint Satisfaction)—
applies the constraint satisfaction idea to the task of analog retrieval (Thagard,
Holyoak, Nelson, & Gochfeld, 1990). The model first scans the whole episodic
memory and looks for episodes having element(s) similar to some target element(s).
It constructs a node for each tentative correspondence between a source episode and
the target. More nodes hypothesize correspondences between individual proposi-
tions. ARCS then sets appropriate excitatory and inhibitory links and relies on the
relaxation procedure to decide which analog best satisfies the constraints.

The model uses a semantic knowledge base for estimating the degree of seman-
tic similarity between various entities. These estimates, however, are static. To il-
lustrate, synonyms always count for 0.6, superordinates for 0.3, etc. As Kokinov
(1992b, 1994a) has argued, this approach fails to reflect the dynamic and context-
sensitive nature of human similarity judgements.

ARCS is broadly similar to MAC/FAC in that it uses a semantically based prelim-
inary screening to identify candidate analogs and then applies the mapping machin-
ery (although running in economical mode) to do more careful analysis. In effect,
both models put a limited matcher inside the retrieval module. This creates redun-
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dancy when the retrieved episode is passed to the main mapping engine. We argue
that there are better ways for integrating the two subprocesses in analogy-making.

2.2.4 LISA

Hummel & Holyoak (1997) proposed an integrated model of analogical access and
mapping called LISA (Learning and Inference with Schemas and Analogies). This
is a structure-sensitive connectionist model and as such combines the advantages
of the symbolic and subsymbolic approaches to cognitive modeling. The model
represents propositions as distributed patterns of activation over units representing
semantic primitives. The distributed representation brings flexibility and generaliza-
tion capabilities. LISA uses dynamic binding to combine these representations into
propositional structures3 (see also Shastri & Ajjanagadde, 1993). Thus it achieves
the structure sensitivity that is crucial for analogy-making. The cost for this is that
LISA must operate within inherent capacity limits given by the size of the phase set
required for the dynamic binding. Hummel and Holyoak (1997; and also Halford et
al., 1998) argue that similar limitations arise in human reasoning.

A key innovation is that LISA treats analogical mapping as a form of learn-
ing. The model establishes correspondences by gradually learning weights of the
mapping connections between various elements. This allows the model to arrive at
globally consistent mappings without the need of massively parallel constraint sat-
isfaction. Moreover, analog access and mapping are integrated—they are treated as
processes of guided pattern classification.

Due to these powerful and flexible mechanisms, LISA has been able to simu-
late various empirical phenomena with considerable success (Hummel & Holyoak,
1997, 2003, 2005). It advances the research on analogy in many ways. Still, the
model is not without its problems.

One open question involves the size of the descriptions that the model can han-
dle. Due to the distributed representations, quite complex machinery is required to
maintain even a simple proposition. Things become even more complicated with hi-
erarchical structures. Although the representational scheme can in principle support
descriptions of arbitrary complexity, higher-order predicates require the so-called
parent-daughter distinction of proposition (P) units. The neurological plausibility of
this distinction seems very problematic.

Another shortcoming is that LISA uses what we call centralized representations
of situations. Each situation could be in one of three modes (driver, recipient, or
dormant) and all elements are simultaneously flipped from one mode into the other.
This implies that LISA, like ARCS and MAC/FAC, treats the episodes in the long-
term memory as units—they are either retrieved wholesale or not at all. As argued
in Section 4.5.1, this approach has certain disadvantages.

3 See Section 2.2.6 for details, a concrete example, and critique of dynamic binding.
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2.2.5 Copycat and Tabletop

All models cited so far start from a hand-coded representation of the target prob-
lem “implanted” into their working memory. In other words, they bypass the task
of building an appropriate representation of the target situation. There are strong
arguments, however, that this latter perceptual aspect is crucial to analogy-making
(Chalmers et al., 1992). Without it, a large and important part of the overall task is
done by the coder of representations (typically a human programmer) instead of the
model. All models discussed so far suffer from this limitation. The current version
of AMBR makes no exception.

The intimate interplay between perception and analogy-making is the defining
feature of the work of Douglas Hofstadter, Melanie Mitchell, and Robert French
(Hofstadter, 1984, 1995; Mitchell, 1993; French, 1995). Their models—Copycat
and Tabletop—constitute an important bridge over the gap that separated research
on analogy-making from that on perception. Both models build their own descrip-
tions of the problems they work with. For Copycat, the problems involve letter
strings in a micro-domain; Tabletop deals with arrangements of objects on a table.
The perceptual activity goes in parallel with the process of building correspondences
between different elements of the situation. Thus the two processes can influence
each other.

Fundamental to Copycat and Tabletop is the notion of statistical emergence: the
program’s macroscopic behavior emerges from the interaction of a large number of
low-level activities in which probabilistic decisions are made. There is no central
executive that controls the operation the system. Instead, all processing is done by
small entities called codelets that create, mediate, and respond to various pressures.
This provides for great flexibility. The model presented here shares many of these
ideas, although in a different form.

Both Copycat and Tabletop lack any episodic memory and do not address the
problem of accessing a source analog from a large pool of past episodes. Thus,
they leave an indispensable component of analogy-making out of their scope, just
as models such as LISA and AMBR do with perception.

2.2.6 Postscript

Most references in this chapter so far (and throughout the book more generally)
are to sources published prior to 1998. They reflect the state of the art at the time
that AMBR2 was being developed. Of course, research on analogy-making did not
stop in 1998. This postscript, written in the summer of 2013, provides pointers to
the more recent literature. This is not a comprehensive review. We focus on the
new developments in analogy modeling, particularly models descending from the
foundational work cited above. Even within this circumscribed scope, however, the
references below are just a sample from a much larger literature.
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Analogy research is a thriving multi-disciplinary field (for reviews, see e.g.,
Dunbar & Blanchette, 2001; Gentner, 2010; Halford, Wilson, & Phillips, 2010;
Holyoak, 2005, 2013). There have been two international conferences on analogy
(Gentner, Holyoak, & Kokinov, 2001; Kokinov, Holyoak, & Gentner, 2009) and a
third is scheduled for 2013 (http://leadserv.u-bourgogne.fr/analogy2013/). A work-
shop on “Analogies: Integrating Multiple Cognitive Abilities” (Schwering, Krum-
nack, Kühnberger, & Gust, 2007) led to a special issue of the journal of Cognitive
Systems Research (Schwering, Kühnberger, & Kokinov, 2009).

Cognitive neuroscience, propelled by advances in functional magnetic resonance
imaging (fMRI) and other techniques, has seen especially rapid growth since 1998.
There is mounting evidence that the prefrontal cortex is heavily involved in analogy
and relational reasoning (e.g., Boroojerdi et al., 2001; Bunge et al., 2005; Christoff
et al., 2001; Morrison et al., 2004; Waltz et al., 1999; Wright et al., 2008; See
Krawczyk, 2012, for review).

The intervening 15 years have also seen big advances in the field of com-
putational models of analogy (see, e.g., French, 2002; Gentner & Forbus, 2011;
Holyoak, 2005; Kokinov & French, 2002, for reviews). Many brand new models
have been proposed (e.g., Blank, 1997; Eliasmith et al., 2012; Eliasmith & Tha-
gard, 2001; Halford, Wilson, & Phillips, 1998; Jani & Levine, 2000; Kanerva, 1998;
Könik et al., 2009; Larkey & Love, 2003; Leech, Mareschal, & Cooper, 2008; Lu,
Chen, & Holyoak, 2012; O’Donoghue, Bohan, & Keane, 2006; Petkov & Koki-
nov, 2006; Petrov & Anderson, 2005; Rachkovskij, 2004; Ramscar & Yarlett, 2003;
Rasmussen & Eliasmith, 2011; Salvucci & Anderson, 2001; Schwering, Krumnack,
Kühnberger, & Gust, 2009; Wilson, Halford, Gray, & Phillips, 2001). In addition,
many classic models have been developed and refined (e.g., Doumas, Hummel, &
Sandhoffer, 2008; Grinberg & Kokinov, 2003; Hummel & Holyoak, 2003; Lovett,
Tomai, Forbus, & Usher, 2009; Marshall, 2006; Nestor & Kokinov, 2004).

The structure-mapping research program is going strong (see Gentner, 2010;
Gentner & Forbus, 2011, for recent reviews). For 30 years since the pathbreaking
articles in the early 1980s (e.g., Forbus, 1984; Gentner, 1983), the research group
led by Dedre Gentner and Ken Forbus has consistently produced a steady stream
of publications that have left an indelible mark in the field. Here we can mention
just three strands of their research program, with the understanding that there is
much more where these three come from. The web site of the Qualitative Reason-
ing Group at Northwestern University (http://www.qrg.northwestern.edu/) is a good
starting point for exploring their modeling work.

First, the Structure Mapping Engine (SME) is being incorporated as a key com-
ponent in a variety of large-scale integrated AI systems (Forbus, 2001; Forbus et al.,
1998). An early example of such system is Falkenhainer’s (1988, 1990b) PHINEAS,
which learns physical theories by analogy with previously understood examples.
In addition to SME, PHINEAS incorporated other modules that had themselves
been used in other projects—QPE, an implementation of Forbus’ (1984) qualita-
tive process theory, and DATMI (Decoste, 1991)), a measurement interpretation
system. A more recent example is the Companion cognitive architecture (e.g., For-
bus, Klenk, & Hinrichs, 2009; Forbus & Hinrichs, 2006; Klenk & Forbus, 2009a).
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This architecture is motivated by the hypothesis that analogical processing is cen-
tral to human reasoning and learning. Accordingly, it uses SME for the “inner loop”
of cognition, where it performs analogical mapping and structural alignment be-
tween representations. Companion uses MAC/FAC (Forbus, Gentner, & Law, 1994)
for similarity-based retrieval and SEQL (Kuehne, Forbus, Gentner, & Quinn, 2000)
for generalization. A notable feature of Companion is that it is not an empty ar-
chitectural shell nor a special-purpose problem solver, but a general knowledge-
rich agent that can acquire or learn domain knowledge by building on an extensive
pre-existing ontology. Different Companion applications have used various Cyc on-
tologies (http://www.cyc.com/platform/overview; Lenat, 1995). These are massive
knowledge bases containing hundreds of thousands of concepts and millions of as-
sertions describing various relationships among these concepts. In terms of sheer
KB size and problem complexity, no model in the analogy literature can rival the
SME-based systems. According to Gentner and Forbus (2011, p. 273), “To date
the Companions architecture is the only one that has been tested in experiments in
which the inputs were produced by groups other than the researchers, and where the
results were independently evaluated by other organizations.”

Companion also features coarse-grained parallelism—it is implemented as a dis-
tributed system that allocates individual nodes of a computer cluster to a small
number of semi-independent, asynchronous processes (or agents). For example, a
Companion system may have an Executive agent that prioritizes the work on the
Companion’s goals, a Session Reasoner that carries out domain reasoning, and an
Analogical Tickler that monitors the state of the working memory and continually
retrieves cases from the large knowledge base and presents them to the user and the
Session Reasoner. This coarse-grained parallelism is an interesting counterpoint to
the much finer-grained parallelism in the DUAL architecture.

A second strand in the structure-mapping research program is its emphasis on
learning. In her experimental work, Dedre Gentner has had a long-standing inter-
est in learning and development (e.g., Christie & Gentner, 2010; Gentner, 1989,
2010; Gentner, Loewenstein, & Hung, 2007; Gentner & Toupin, 1986). She cur-
rently is a co-Principal Investigator of the Spatial Intelligence and Learning Center
(http://spatiallearning.org/) funded by the National Science Foundation. The early
models focused on the mapping and retrieval stages of analogy-making, although
PHINEAS (Falkenhainer’s 1988, 1990b) was a pioneering exploration of how to
learn abstract knowledge via cross-domain analogies. More recent models increas-
ingly emphasize learning. This follows the general trend in the field of symbolic ar-
tificial intelligence. Early AI systems focused on deductive processing, search, and
problem solving, but today statistical learning techniques are widely used across all
areas of AI (Russell & Norvig, 2009). Relational learning is the current frontier (For-
bus, 2010). While much can be done with classifiers, broadening the expressiveness
of what can be learned is crucial for many tasks, as well as for capturing the range of
human learning. SME and MAC/FAC are key components of several insightful re-
cent models of concept learning via analogical generalization and near-misses (e.g.,
Kuehne, Forbus, Gentner, & Quinn, 2000; McLure, Friedman, & Forbus, 2010), as
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well as learning new domain theories through multiple cross-domain analogies (e.g.,
Klenk & Forbus, 2009a, 2009b).

A third strand in the structure-mapping research program is its recent emphasis
on sketch understanding and high-level perception. A key tool for this research is the
open-domain4 sketch understanding system CogSketch. Its authors (Forbus et al.,
2011, p. 648) argue eloquently for the importance of sketching in human cognition:

Sketching enables people to externalize and communicate ideas. People draw maps, the
structure of complex systems, and sequences of sketches illustrating how a process unfolds.
The power of sketching is such that visual languages are invented do depict otherwise ab-
stract ideas (e.g., electronic circuit schematics, software modeling diagrams, parse trees).
Sketching is fascinating scientifically because it engages visual, spatial, and conceptual
knowledge and skills. Consequently, understanding how people understand and communi-
cate with sketches should provide important insights for understanding human cognition
more generally. Moreover, if we can use models of sketch understanding to create soft-
ware that can participate in sketching in human-like ways, there are potentially significant
practical benefits.

This argument is reinforced by data from cognitive linguistics. Lakoff and John-
son’s (1980) seminal book Metaphors We Live By is full of persuasive linguistic ex-
amples that suggest that many of our fundamental concepts are organized in terms
of orientational metaphors. For instance, virtue is up, whereas depravity is down.
This is manifested in expressions such as: “He is high-minded. She is upright. That
low trick would be beneath me.” (Lakoff & Johnson, 1980, p. 16). Furthermore, our
experience with physical objects (especially our own bodies) provide the basis for
an extraordinarily wide variety of ontological metaphors that cast events, activities,
emotions, ideas, etc., as entities and substances (p. 25f):

We are physical beings, bounded and set off from the rest of the world by the surface of our
skins, and we experience the rest of the world as outside us. Each of us is a container, with
a bounding surface and an in-out orientation. We project our own in-out orientation onto
other physical objects that are bounded by surfaces. Thus we also view them as containers
with and inside and an outside. Rooms and houses are obvious containers. . . . But even when
there is no natural physical boundary that can be viewed as defining a container, we impose
boundaries—marking off territory so that it has an inside and a bounding surface—whether
a wall, a fence, or an abstract line or plane. . . .

[For example,] we conceptualize our visual field as a container and conceptualize what
we see as being inside it. . . . Thus we can say: “The ship is coming into view. I have him in
sight. That’s in the center of my field of vision.” . . .

We use ontological metaphors to comprehend events, actions, activities, and states.
Events and actions are conceptualized metaphorically as objects, activities as substances,
states as containers. A race, for example, is an event, which is viewed as a discrete entity.
. . . Thus we can say of a race: “Are you going to the race? Did you see the race? Halfway
into the race, I ran out of energy. He’s out of the race now.”

These ideas are related to Barsalou’s (1999) perceptual symbol system hypothe-
sis and to the rapidly expanding (sic!) field of situated cognition (e.g., Robbins &
Aydede, 2008). They suggest ways in which abstract thought and language can be
grounded in the perceptual-motor circuits in the brain (e.g., Eliasmith, 2013). Other

4 CogSketch is available from http://www.qrg.northwestern.edu/software/cogsketch/index.html.
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researchers (e.g., Chalmers et al., 1992; Hofstadter, 1984, 1995; Holyoak & Tha-
gard, 1995; Hummel & Stankiewicz, 1998; Lakoff & Johnson, 1999; Lovett, 2012;
Mitchell, 1993; French, 1995) have also pointed out the importance of analogy in
building a bridge between perception and cognition.

For all these reasons, tools such as CogSketch are important additions to our
armamentarium. The key scientific hypothesis embodied CogSketch is that percep-
tual processing produces qualitative spatial representations (Forbus et al., 2011).
These representations can then be used for matching (via SME), retrieval (via
MAC/FAC), and generalization (via SEQL). To create a sketch, the user simply
begins drawing. CogSketch captures the sketch’s ink, but the user must use cer-
tain segmentation tools to help the software segment the ink into separate objects.
The user can also provide optional conceptual labels for various pieces of ink or
the spaces defined by the ink. For example, a sketch can consist of a circle labeled
“Sun,” a larger concentric circle labeled “orbit,” and a small filled circle labeled
“planet.” The conceptual labels are selected from the OpenCyc knowledge base
(http://www.cyc.com/platform/overview) that contains over 58,000 concepts from
a broad variety of domains. Given a sketch, CogSketch automatically computes
qualitative spatial relations between objects. These relations include topology (e.g.,
containment, intersection, contact) and relative position.5 CogSketch combines this
relational information with the conceptual labels to produce a qualitative represen-
tation of the sketch. As it depends on the user’s initial segmentation and labeling of
the image, CogSketch is not an autonomous model of scene perception and object
recognition. But note that in human-to-human sketching too, “recognition is a cat-
alyst, not a requirement” (Forbus et al., 2011, p. 649). When people sketch to each
other, they typically also talk and call out what the squiggles on the page are meant
to represent.

In a recent Ph.D. dissertation advised by Ken Forbus, Andrew Lovett (2012)
extended CogSketch in two ways. First, the new system—Perceptual Sketchpad—
constructs hybrid representations that combine qualitative and quantitative (met-
ric) information. Second, Perceptual Sketchpad constructs three-level hierarchical
representations. Starting with the entry-level objects segmented by the user, it can,
on demand, parse an object into a set of edges or aggregate several objects into a
larger-scale group. The resulting hierarchical hybrid representations (HHRs) span
three levels of abstraction—edges, objects, and groups—and contain qualitative and
quantitative information at each level.

Lovett’s (2012) system can also encode and manipulate procedural knowledge
in the form of Spatial Routines for Sketches (SRS). This is a modeling framework
inspired by Ullman’s (1987) visual routines. SRS implements a set of cognitive
operations such as mental rotation, grouping by proximity, addition or removal of
parts or objects, shape deformation, etc. An important class of operations involve
perceptual comparisons via SME. The operations can be combined to create a spa-
tial routine for performing some spatial task or describing a particular strategy for
solving geometric analogy problems. A spatial routine is analogous to a computer

5 Petrov, Van Horn, and Todd (2011) provide experimental evidence that two particular qualitative
relations—collinearity and bisection—can play important roles in object recognition.
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program—each operation takes an input, processes it, and produces an output. For
example, a differencing routine (or strategy) takes two HHRs as inputs and produces
an HHR describing how the first input should be changed to become identical with
the second.

Using the SRS framework, Lovett (2012) builds models of three problem solving
tasks: (i) Evans’ (1968) geometric analogy problems (e.g., Lovett, Tomai, Forbus,
& Usher, 2009), (ii) Raven’s Progressive Matrices (RPM; Raven, Raven, & Court,
2000) test of fluid intelligence (Lovett, Forbus, & Usher, 2010), and (iii) Dehaene,
Izard, Pica, and Spelke’s (2006) visual oddity task (Lovett & Forbus, 2011). Each
of these models has sufficient information-processing resources to solve many (but
not all) problems in its respective domain. This is evidence for the generality and
expressive power of the SRS framework. Moreover, the performance of each model
is compared to psychological data (Lovett, 2012). Problems that are hard for the
model are also difficult for people. A variety of “ablations” can be performed on
the model, blocking the ability to do specific operations such as grouping objects
together. These ablations cause selective failures to solve particular problem types.
Lovett (2012) performed ablation analyses to evaluate the difficulty of a problem
along three dimensions: encoding and abstraction, working memory load, and con-
trol processes. He then used linear regression to assess how well these factors ac-
count for human accuracy and response-time patterns across the problem types. A
detailed examination of Lovett’s work is beyond our present scope but these models
certainly deserve careful study.

An important feature of the SRS models is that many of the visual routines
use structure mapping to compute perceptual comparisons (Lovett, 2012). In other
words, the process of (high-level) perception is heavily dependent on the mapping
process. More broadly, Gentner and Forbus (2010) suggest that “similarity compu-
tations appear to be ‘inner loop’ core operations of cognition, i.e., they are used
throughout cognitive processes” (p. 272, quotes in original, emphasis added). Thus,
analogy researchers seem to be reaching a consensus that high-level perception (and
memory retrieval and perhaps other cognitive processes) cannot be modeled as en-
capsulated modules separate from the mapping process. This is a partial6 resolution
to the theoretical controversy of whether perception is separable from mapping (e.g.,
Fodor, 1983; Forbus et al., 1998) or not (e.g., Chalmers et al., 1992; French, 1995;
Hofstadter, 1984, 1995; Kokinov, Bliznashki, Kosev, & Hristova, 2007; Mitchell,
1993; Nestor & Kokinov, 2004). One lesson that we draw from Andrew Lovett’s
(2012) thesis is that, once one tries to build a detailed model that can perform a
visual task such as Raven’s Progressive Matrices or the oddity task, the modular-
ity of high-level perception is revealed to be untenable. On the other hand, when
the interactionist view is pushed to its logical extreme (e.g., Lakoff, 1987; Lakoff
& Johnson, 1999; Linhares, 2000), it denies the very existence of objects and facts
independent of human cognitive capacities. On this view, instead of external sin-
gle bounded entities that can be segmented on a CogSketch image and labeled in
terms of an OpenCyc ontology, objects are seen as “internal units of description”

6 The resolution is only partial because the converse question—whether mapping is separable from
perception—remains contentious. This controversy is discussed in more detail in Section 3.2.1.
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(Linhares, 2000, p. 268). Note that this does not deny the existence of a reality that
exists even if we close our eyes to it. Rather, it denies that the segmentation of the
world into separable units, the imposition of boundaries between those units, is a
matter of objective fact. This is reminiscent of the so-called ontological relativity
thesis in philosophy of language and the accompanying arguments for the indeter-
minacy of translation (e.g., Quine, 1968)

Douglas Hofstadter (e.g., 1984, 1995) has always been a trenchant defendant of
the interactionist view. Since 1998, he has continued to articulate it in new books
(e.g., Hofstadter & Sander, 2013) written in his trademark style. In addition, several
new Ph.D. students developed models under his supervision. These include Mar-
shall’s (1999, 2006) Metacat—a continuation of Hofstadter (1984) and Mitchell’s
(1993) Copycat project. Open-source software for running Metacat (and, by sub-
sumption, Copycat) is available at http://science.slc.edu/ jmarshall/metacat/. Among
other things, Metacat adds an episodic memory to the original Copycat architec-
ture. This makes it even more closely related to the DUAL architecture described
in this book. Other research by Hofstadter’s group includes two models of the Let-
ter Spirit micro domain (McGraw, 1995; Rehling, 2001) and a model (Foundalis,
2006) that can solve some (but by no means all) of Bongard’s (1970) challenging
pattern-recognition problems (see http://www.foundalis.com/res/bps/bpidx.htm for
a comprehensive collection). Unfortunately, these fascinating models are beyond
our present scope.

The LISA research program is also going strong (see Hummel & Holyoak, 2005,
for review). Recall from Section 2.2.4 that LISA is a structure-sensitive connec-
tionist model that uses a hybrid representational scheme. Objects, concepts, and re-
lations are represented as distributed patterns over semantic feature units, whereas
propositions are represented as hierarchical arrangements of localist proposition (P)
and subproposition (SP) units. A defining characteristic of LISA is its reliance on dy-
namic binding by synchrony of firing. The easiest way to explain this is by a concrete
example. Consider the proposition taller-than(john, sally). It involves
two objects (john and sally) and two roles (more-tall and less-tall).
Each of these four entities is represented as a distributed pattern over the seman-
tic feature units. For instance, the features of john include {male, adult, human,
height-6, . . . }, whereas those of more-tall include {more, dimension-height,
dimension-additive, . . .}.

It is critically important to represent that john occupies the more-tall role in
the proposition, whereas sally occupies the less-tall role. Without such role-
filler binding, it is impossible to differentiate taller-than(john, sally)
from taller-than(sally, john). In LISA, fillers are bound to roles by
virtue of the synchrony of firing of the units that represent them. Thus, john,
more-tall, and all their associated feature units fire in synchrony during a cer-
tain phase of the so-called phase set. Similarly, sally, less-tall, and all their
associated feature units also fire in synchrony during another phase. The model cy-
cles through all phases in the phase set, driven by complex oscillatory circuits (see
also Shastri & Ajjanagadde, 1993; von der Malsburg, 1995). Hummel and Holyoak
(2003, p. 225) and Knowlton, Morrison, Hummel, and Holyoak (2012, p. 375) cite
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neurophysiological evidence (e.g., Singer & Gray, 1995) that the frequency of these
oscillations is approximately 40 Hz, which is in the gamma band of the electroen-
cephalographic (EEG) spectrum.7 In other words, one sweep through the entire
phase set takes ≈ 25 ms. The number of distinguishable phases in this cycle lim-
its the working-memory capacity of the system (see also Halford et al., 1998, 2010).
Hummel and Holyoak (2003, p. 225) estimate that “the maximum amount of infor-
mation that can be processed together during analogical mapping [is] 4–6 role bind-
ings or roughly 2–3 propositions.” In the above example, this implies that john,
more-tall, and their associated features are activated for ≈ 5 ms.8 This role-
filler binding is then inhibited while the other binding (sally and less-tall)
is activated for ≈ 5 ms. The system then can process a few more subpropositions
(= role-filler bindings) during the remainder of the phase set. Then the cycle repeats:
john and more-tall fire again, followed by sally and less-tall, and so
forth. At the level of the semantic features, this scheme produces sets of mutually
desynchronized patterns of activation, one for each subproposition. LISA has elabo-
rate control mechanisms for coordinating this activity and for bringing propositions
in and out of the phase set.

LISA’s hybrid representational scheme combines the flexibility of distributed se-
mantics with the structure-sensitivity of explicit propositions. The resulting model
is very powerful and has been remarkably successful. It can account for a number of
phenomena in analogical reminding and mapping (e.g., Hummel & Holyoak, 1997;
Krawczyk, Holyoak, & Hummel, 2005), analogical inference and schema induction
(e.g., Hummel & Holyoak, 2003), similarity judgment (Taylor & Hummel, 2009),
and other domains (see Hummel & Holyoak, 2005, for review).

A successor model called DORA (Discovery Of Relations by Analogy; Doumas,
Hummel, & Sandhoffer, 2008) makes a foray into the important and difficult prob-
lem of how a cognitive architecture can discover relational concepts from examples
and represent them as explicit structures (predicates) that take arguments (fillers)
bound to distinct roles. The mechanisms for role-filler binding reduce the prob-
lem of learning multiplace (e.g., binary) relations to the problem of learning single-
place (unary) properties (or attributes). These single-place role-filler bindings are
then linked together to form complete relational structures. To achieve this linkage,
DORA extends the time-dependent mechanisms of LISA so that role-filler bindings
are represented not by synchrony (as in LISA) but by systematic asynchrony (see
also Love, 1999). The idea is that roles fire immediately before their corresponding
fillers, rather than simultaneously. In the above example, more-tall would fire
first, followed by john, followed by less-tall, and finally sally. This seg-
regates the roles and fillers in time and thereby works around a technical limitation

7 John Hummel (personal communication, 18 October, 2013) advises caution on this point because
“it is not currently known what exactly is oscillating at 40 Hz. Is it one neuron, a population of
neurons, or multiple desynchronized populations?”
8 John Hummel (personal communication, 18 October, 2013) expresses reservations on this point:
“We have tried to stay as close to the neurophysiology as possible here, but I would be uncom-
fortable saying that LISA relies on spike timing in the 5 ms range, especially since the synchrony
LISA exploits is actually burst rather than spike synchrony.”
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of the synchronous firing scheme. In LISA, predicates (such as more-tall) and
objects (such as john) must be different data types. “Because object semantics fire
at the same time as the predicate semantics to which they are bound, the only way
to know whether a given unit represents an object or a feature is to assume that the
two are represented by separate (non overlapping) pools of semantic feature units.”
(Doumas et al., 2008, p. 8). By contrast, DORA can use the temporal order of firing
to disambiguate roles from fillers. As a result, it can encode predicates and objects
with a common set of semantic units. “The capacity to treat role and filler semantics
equivalently and still specify their bindings dynamically makes all of DORA’s other
operations possible.” (Doumas et al., 2008, p. 8). Note that the asynchronous firing
reduces the effective WM capacity in half.

In our opinion, DORA can learn only comparative relational concepts such as
taller-than. To learn them from individual examples, DORA utilizes a neural
comparator circuit that is invoked whenever two or more objects in the phase set
have features that vary along the same metric dimension (e.g., height, size, color,
etc.). The comparator circuit itself is hardwired into DORA in advance and is not
learned. The relevant semantic features are given a priori as well. DORA’s compara-
tor activates the semantic unit more in synchrony with the larger value along the
dimension, the semantic unit less in synchrony with the smaller, and the semantic
unit same if the two values are equal. The resulting more, less, or same seman-
tics, along with the semantics describing the dimension itself (e.g., height) pro-
vide the relational semantics for DORA’s emerging relational predicates. (Doumas
et al., 2008). In other words, the semantics of the unary predicate more is grounded
in the internal procedural knowledge of the system as defined (and implemented) by
the comparator circuit. DORA then links these single-placed predicates into mul-
tiplaced relations such as taller-than. The mechanisms that accomplish this
linkage are complex and involve mapping, comparison, recruitment of new units,
Hebbian learning, and intricate executive control.

Doumas et al. (2008, pp. 32–33) argue that DORA can also learn non-comparative
relational concepts such as chase. We find their argument vague and unconvincing
because it is not cached out fully in mechanistic terms. As far as we can tell, flesh-
ing out the detailed steps that are necessary to carry out the proposed computation
would expose that the argument implicitly relies on the existence of a “chase recog-
nition circuit” that activates the proper semantic features in the proper order. This
leads to some deep epistemological questions that are beyond our present scope.

DORA is an important milestone in analogy research because of its pioneering
attempt to address in mechanistic terms the fundamental theoretical question of the
origin of relational concepts. Despite its many limitations, it succeeds in render-
ing explicit how hard this problem is even for the most mundane relations. Much
further research is needed in this foundational and challenging field. In broadest
terms, DORA is built on the insight that relational concepts can be grounded in the
regularities of internal procedural knowledge. The system must be able to perform
comparisons before it can reason about comparative relations. This is a very fruit-
ful idea that opens fascinating connections to Barsalou’s (1999) perceptual symbol
systems and Lakoff and Johnson’s (1980) orientational metaphors discussed above.
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Another major development in the LISA research program is that LISA has
emerged as the main framework for interpreting neuropsychological, fMRI, and
EEG data in computational terms (see Knowlton et al., 2012, for review). This
research is still in its infancy. In an oft-cited article (Morrison et al., 2004), for
example, the effects of frontotemporal lobar degeneration in patients with neurode-
generative disease was modeled by reducing certain LISA parameters from their
default values. Different parametric manipulations degrade the model performance
in characteristic ways, some of which correlate with patterns of behavioral deficit in
various special populations. Much more research is needed to develop a full-fledged
mechanistic explanation.

LISA is promoted as being neurologically plausible (Hummel, 2011; Knowlton
et al., 2012; Morrison et al., 2004). While this claim is rarely challenged in the anal-
ogy research community, LISA’s binding mechanism—synchrony of firing—is very
controversial in the neuroscientific community. The so-called binding problem is a
hotly debated topic in neuroscience (see, e.g., Feldman, 2013; Singer, 2007; Singer
& Gray, 1995, Treisman, 1999; von der Malsburg, 1995, for reviews; see also the
special issues of the journals Neuron, Roskies, 1999, and Visual Cognition, Müller,
Elliott, Herrmann, & Mecklinger, 2001). The objective complexity of the issues is
compounded by terminological confusion, as the phrase “the binding problem” is
used in reference to at least four distinct problems with different computational and
neural requirements (Feldman, 2013). Most data come from experiments on visual
feature binding, whereas LISA depends on a form of variable binding in Feldman’s
(2013) terminology. Synchrony is a popular candidate solution to all four problems
(e.g., Hummel, 2011; Shastri & Ajjanagadde, 1993; Singer, 2007; von der Malsburg,
1995). The binding problems are far from settled, however, and there are powerful
arguments against the synchrony hypothesis (e.g., Cer & O’Reilly, 2006; Shadlen &
Movshon, 1999; O’Reilly, Busby, & Soto, 2003).

Two criticisms of the synchrony hypothesis are particularly convincing. The first
is the so-called decoding problem (Shadlen & Movshon, 1999). Binding by syn-
chrony is useful only if some decoding (or “read-out”) mechanism in the brain can
distinguish synchronous from asynchronous signals at the relevant time scale, which
according to Hummel and Holyoak (2003, p. 225) is on the order of 5 milliseconds
per phase. The problem is that, according to standard biophysical estimates of neu-
ronal function and synaptic transmission (Kandel, Schwartz, & Jessell, 2000; Koch
& Segev, 2000), this is just too quick for the neural hardware. In other words, stan-
dard cortical neurons (including prefrontal neurons) cannot accomplish in 5 ms the
complex decoding operations implicit in LISA’s mechanisms.9 We cannot develop
this argument here because it requires detailed knowledge of neurophysiology that is
beyond the scope of this book. For our purposes, it is sufficient simply to enumerate
some of the most relevant facts. Firing-rate codes (as implied by LISA’s continu-

9 John Hummel (personal communication, 18 October, 2013) claimed that “the necessary ‘read-
out’ process is nothing more complicated than postsynaptic neurons being sensitive to the syn-
chrony (at some temporal time scale) of spike arrival. . . . These mechanisms are not all complex.
Just temporally-sensitive sums.” However, he is reluctant to make firm commitments about how or
whether LISA’s precise timing parameters map onto the timing properties of neural hardware.
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ous activation values) are useless at this time scale because much longer temporal
windows (e.g, 50 ms) are needed to estimate a firing rate reliably. Thus, the putative
decoding circuits must differentiate between synchronous and asynchronous firing
at the level of individual spikes, not spike trains. But synchronous spikes stand out as
special only if they do not arise frequently by chance. Shadlen and Movshon (1999)
argue convincingly that, given typical fan-in factors and background noise levels in
the cortex, synchronous spikes that carry binding information cannot be discrim-
inated reliably from spurious coincidences among unrelated spikes. Furthermore,
there is the problem of the transmission delays across anatomically distant cortical
areas. The duration of a typical spike (or “action potential”) is on the order of 1 ms
and the time constant of a typical chemical synapse is 1–5 ms or longer (Kandel
et al., 2000, Table 10-1 on p. 176). Thus, the putative millisecond precision is lost
whenever a signal is relayed across a single synapse. Moreover, axonal conduction
delays are quite variable (because they depend on axon diameter and myelination)
and are also in the millisecond range (Swadlow & Waxman, 2012). Thus, if a neu-
ron in area A is sending phase-tagged spikes to two other neurons in distant areas B
and C, respectively, the latter two neurons will not receive the spikes synchronously.
This is analogous to a situation in which a person simultaneously sends Christmas
cards to two friends living in different cities. It is highly unlikely that the cards will
arrive simultaneously because of the different distances to the two destinations and
because of the different conduction velocities along the way. The problem is that the
desynchronization produced by such informationally irrelevant biophysical delays is
comparable to the temporal precision needed to carry binding information in LISA.
The above list illustrates (but by no means exhausts) the serious biophysical ob-
stacles that must be overcome in order to decode phase-tagged spikes successfully.
DORA’s systematic asynchrony imposes even greater implementational demands.
In particular, the putative decoding mechanisms in DORA must be able to detect
not only simultaneous co-occurrences (which bind roles or fillers to features within
a phase) but also cross-correlations of events at fixed time lags (which disambiguate
roles from fillers across consecutive phases). We are extremely skeptical whether
cortical neurons can perform such operations reliably at a millisecond time scale.

The second criticism of the synchrony hypothesis identifies a timing problem
from the other direction—binding by synchrony is too slow for cognition. For con-
creteness, consider a phase set with 6 phases of 5 ms each. Thus, the total duration
of one sweep through the phase set is 30 ms. This temporal scale is necessary for the
purposes of dynamic binding. Note, however, that the mapping process in both LISA
and DORA requires the integration of information across the phases in the phase
set. This is accomplished by the so-called self-supervised learning (SSL) mecha-
nism that requires at least 3 sweeps through the phase set to perform one update
of the so-called mapping connections (Doumas et al., 2008, Appendix A). Thus, it
takes 3×30 = 90 ms to perform one SSL update on 3 binary relations (6 role-filler
bindings) in LISA. Given that even simple mapping tasks typically involve multi-
ple comparisons among multiple relations, a system that needs 90 ms to process
3 binary relations once will quickly accumulate overall response times that exceed
the characteristic latencies of human cognition. The problem is even more acute in
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DORA because it requires twice as many phases as LISA to process the same ma-
terial, given that roles and fillers in DORA do not share phases. For reasons such
as these, “temporal phase coherence is no longer considered a major contender in
feature binding, in part because it would be much too slow to account for the exper-
imental data. It is much more relevant in variable binding where most other models
do not apply” (Feldman, 2013, p. 7). The above argument suggests that temporal
phase coherence is much too slow for analogy-making also. A related argument is
known as the 100-step program constraint on cognition (Feldman & Ballard, 1982;
Newell, 1990).

The proponents of the synchrony hypothesis (e.g., Doumas & Hummel, 2005;
Hummel, 2011; Hummel & Holyoak, 1997, 2003; Knowlton et al., 2012) embrace
these limitations and claim that they correspond to the well documented limitations
in human working-memory capacity (e.g., Cowan, 2000). However, our present con-
cern is not about the limited number of items that can be held in WM but about the
time it takes to process them. Concretely, the concern is not that LISA can only
maintain 6 distinct role-filler bindings at a time but that it takes 90 ms to process
them once. This is arguably too slow to model human performance.

Can this problem be resolved within the LISA framework? There seem to be
only two possible approaches: reducing the duration of each elementary processing
step or increasing the amount of informational content that can be processed in one
step. The first approach does not seem viable because the current LISA proposal
already exceeds the temporal resolution of the neural hardware as discussed above.
The second approach hinges on the concept of chunking that is central to the WM
literature but is almost absent from the discussions of synchrony-based role-filler
binding. LISA supports a form of chunking in the so-called parent-daughter dis-
tinction of proposition (P) units. “When a P unit is active in daughter mode (i.e.,
as an argument in another proposition), it functions as a chunked representation
of its propositional content” (Hummel & Holioak, 1997, p. 457). This is indeed a
powerful mechanism, provided that the parent-daughter distinction can be given a
neurologically plausible interpretation. However, it is far from clear whether this
form of chunking is general enough to resolve the problem discussed here because,
“This chunked representation is useful for mapping only insofar as mapping con-
nections have already been established between the P unit and others: Because it
cannot express its semantics directly, a P unit in daughter mode can only affect
the recipient analog through learned mapping connections” (ibid.). But humans are
quite capable of processing complex relational information at comparatively high
speeds even when the content is novel—witness the time it took you to read the
current sentence. LISA needs time to process each P unit in parent mode in order
to learn the mapping connections that can support subsequent speedups when the
same P unit is processed in daughter mode. So it is far from clear whether there are
overall time savings when both modes are accounted for. Further research is neces-
sary to establish whether LISA can achieve the information throughput that human
cognition can achieve.

It is notable in this regard that the existing implementation of LISA already
makes predictions about the total number of WM cycles needed to solve a given
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problem. When multiplied by the assumed oscillation frequencies, the number of
cycles can easily be converted to response times. Note also that this conversion can
be performed even without detailed knowledge of how LISA’s mechanisms map
onto neural hardware. The model makes definite predictions in terms of number of
cycles. We appeal to LISA modelers henceforth to report descriptive statistics about
the number of cycles observed in their simulations. If oscillations in the gamma fre-
quency band in human EEG are in any way relevant to LISA’s binding mechanism
(Knowlton et al., 2012), the model makes predictions about overall response times.
While we are not aware of any reports10 of such predictions, we suspect that they
would reveal that LISA is unacceptably slow relative to human performance. DORA
is two times slower than LISA.

In conclusion, the LISA framework constitutes an important and influential pro-
posal about how relational reasoning can be implemented in the brain. It has gener-
ated and continues to generate numerous insights into the mechanisms of analogy-
making. As such, it definitely deserves careful study and further development. On
the other hand, LISA’s foundational mechanism—binding by synchrony—remains
controversial and is subject to some very serious objections. DORA pushes the en-
velope still further. In many ways, these models’ contributions are not so much in
giving specific answers to various theoretical questions, but in revealing the true
complexity of these questions.

The proponents of the synchrony hypothesis acknowledge that much research
remains to be done: “Temporal structure in the form of oscillatory activity is in fact
prominent in the brain, although no direct evidence yet connects such activity to
the coding of propositions” (Knowlton et al., 2012, p. 376). John Hummel (personal
communication, 18 October, 2013) cautions that the above analysis “rests on various
assumptions about the timing properties of neurons and what they map onto, both in
LISA’s operation and in the neurophysiological data.” He concludes that, “although
it is by no means clear that LISA is consistent with the timing properties of real
neurons, neither is it so clear that it is inconsistent. Admittedly, this lack of clarity
is a limitation of the theory as it currently stands.”

Given that the neurological plausibility of the synchrony-based framework is by
no means obvious, the scientific community needs to explore alternative approaches
in addition to continued work on LISA and DORA. An alternative approach in fact
exists and seems very promising. Instead of synchrony of firing, binding can be im-
plemented by conjunctive tensor products of various kinds (e.g., Eliasmith, 2013;
Gayler, 2003; Gayler & Levy, 2011; Halford et al., 1988, 2010; Kanerva, 1988;

10 Viskontas et al. (2004) report LISA latencies alongside human RTs. However, the LISA latencies
are relative to an assumed pre-processing stage whose timing is not factored into the number of
iterations plotted on Figures 3B, 4B, and 4D in Viskontas et al. (2004). As we need absolute
(as opposed to relative) LISA latencies to perform the analysis suggested here, this data set is
not immediately relevant for our present purposes. For the record, the time units (“iterations”) on
these plots are implementation-dependent. To convert to more meaningful units, 600 such iterations
correspond to the time to process one binary proposition (two role-filler bindings) once (John
Hummel, personal communication, 23 October, 2013). If the comparison with the human response
times is taken at face value, RT differences of ≈ 1.5 seconds (across conditions within subjects)
correspond to the time (600 iterations) needed to process one binary proposition in the simulation.
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Plate, 2003; Smolensky, 1990; Smolensky & Legendre, 2006; Stewart, Bekolay,
& Eliasmith, 2011). A closely related proposal is based on coarse-coded conjunc-
tive distributed representations (CCDRs, Cer & O’Reilly, 2006; O’Reilly, Busby,
& Soto, 2003; Petrov, Huang, & O’Reilly, 2013). These systems are free from the
rigid temporal constraints that undermine the synchrony-based accounts. Further-
more, tensor products allow multiple relations to be represented and processed in
parallel. The degree of parallelism is still limited by the throughput capacity of the
neural hardware and large problems must still be solved piecemeal in a sequence
of processing steps. However, the throughput limitations are not nearly as crippling
as those in LISA and the flow of control is not as sequential. This modest amount
of parallelism is consistent with the behavioral results from working-memory ex-
periments because the WM capacity limitations may stem from various forms of
interference rather than from a limited number of slots (e.g., Halford et al., 1988;
Nairne, 1990; Neath & Nairne, 1995; O’Reilly, Braver, & Cohen, 1999; see Nairne,
2002, for a review and critique of the standard model of short-term memory).

Tensor products and CCDRs have been used in various models of relational rea-
soning and analogy-making (e.g., Blank, 1997; Cer & O’Reilly, 2006; Eliasmith &
Thagard, 2001; Eliasmith et al., 2012; Halford et al., 1988; Kanerva, 1998; Petrov,
Huang, & O’Reilly, 2013; Plate, 2003; Rasmussen & Eliasmith, 2011). Unfortu-
nately, these models are quite technical and beyond the scope of this brief review,
but we cannot fail at least to mention two especially promising lines of research.
It is notable that both of them are based on full-fledged cognitive architectures.
The first is the Leabra architecture developed by Randy O’Reilly and his collabora-
tors (e.g., Jilk, Lebiere, O’Reilly, & Anderson, 2008; Kriete & Noelle, 2011; Kriete,
Noelle, Cohen, & O’Reilly, 2013; O’Reilly, 1998, 2006; O’Reilly, Braver, & Cohen,
1999; OReilly, Busby, & Soto, 2003; O’Reilly, Hazy, & Herd, in press; O’Reilly &
Munakata, 2000; O’Reilly, Petrov, Cohen, Lebiere, Herd, & Kriete, in press). The
second is the Semantic Pointer Architecture developed by Chris Eliasmith and his
collaborators (e.g., Eliasmith, 2013; Eliasmith & Anderson, 2003; Eliasmith et al.,
2012; Stewart, Bekolay, & Eliasmith, 2011).

Tensor products and CCDRs have received their share of criticism too, includ-
ing the charge that they are doomed to fail because they allegedly violate the so-
called role-filler independence (Doumas & Hummel, 2005; Hummel, 2011). In our
opinion, this particular charge is unfounded, but undoubtedly there are many open
questions and much need for further tests of this alternative framework.

In conclusion, the field of analogy modeling has made enormous strides since
1998. Several sophisticated research programs have been developed, most of them
centered around a cognitive architecture. Still, there are many open questions and
unresolved problems, particularly with respect to the neurological substrate of rela-
tional reasoning. We fully agree with Gentner and Forbus’ (2011, p. 273) assessment
that, “Coming up with unified models that are both capable of human-like perfor-
mance on realistic tasks and have a clear, biologically plausible implementation,
remains an open problem.”





Chapter 3
AMBR in Broad Strokes

The aim of this chapter is to present a concise and relatively self-contained descrip-
tion of the AMBR model and the DUAL architecture.

It is impossible to speak about AMBR without first mastering the DUAL terminol-
ogy presented briefly below. DUAL is a general cognitive architecture (cf. Anderson,
1983; Newell, 1990) that is the foundation of the model. It was proposed by Kokinov
(1994a, 1994b, 1994c). A detailed description of the 1998 version of the architec-
ture can be found in Petrov (1997), and a shorter one in Kokinov and Petrov (2001).
The Afterword traces the DUAL research since 1998.

3.1 Dual Cognitive Architecture

3.1.1 Main Ideas of DUAL

DUAL is a general-purpose cognitive architecture that comprises a unified descrip-
tion of mental representation, memory structures, and processing mechanisms. All
these aspects of the architecture are organized around a small set of principles:

• Hybridity. DUAL is hybrid—it has complementary aspects. Moreover, it is hy-
brid in two ways. On the one hand, it hinges upon the symbolic/connectionist
distinction and the integration between the two. On the other, there is the declara-
tive/procedural distinction and integration thereof. The four aspects derived from
these two pairs are merged together and coexist at every level of granularity in
the architecture.

• Emergent computation. All processing and knowledge representation in the ar-
chitecture is carried out by a cohort of small entities called Dual agents. There
is no central executive that controls the whole system, allocates resources, re-
solves conflicts, etc. Instead, there are small-scale DUAL agents and local in-
teractions between them. The global behavior of the system emerges from the
self-organizing pattern of these interactions.

29
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• Dynamics and context-sensitivity. An important feature of DUAL’s operation
is that it is constantly changing in response to influences from the environment.
This is possible due to the emergent nature of the processing and the lack of rigid
centrally imposed algorithm.

3.1.2 Basic Terms and Levels of Description

The basic structural and functional unit of DUAL is the Dual agent. Due to its impor-
tance, the DUAL agent has synonymous names: micro-agent or simply agent. Other
names like node and unit are used to bring connotations from other theories, notably
semantic networks and connectionism. It is important to note that throughout this
book all the aforementioned terms refer to the same concept: the DUAL agent.

DUAL agents are the smallest building blocks of DUAL. Technically, there is
nothing in the architecture but agents of various kinds. They interact with one an-
other and thus combine into larger complexes. The interactions between agents are
very important in DUAL because they keep the architecture together. They are often
reified and called links, especially in contexts where the agents are called nodes.

A major architectural principle of DUAL is that larger structures emerge from the
interaction of smaller ones. Thus, one can consider building blocks of increasing
size. DUAL agents are at the base of this hierarchy, followed by coalitions, and
formations. There is no sharp boundary between the latter terms. As a rule of thumb,
a coalition consists of a relatively small number (e.g., less than 20) of interconnected
DUAL agents while formations are much bigger.

DUAL-based models are complex systems and must be analyzed at different lev-
els of granularity. It is useful to distinguish the following three levels:

The microlevel (agent level) deals with DUAL agents. Relevant topics here in-
clude the internal structure of a agent, its information-processing abilities, and the
differences among agents of different types.

The mesolevel (coalition level) deals with coalitions of DUAL agents. A coalition
is a set of agents and a pattern of interactions among them. Coalitions have two very
important properties: they are emergent and dynamic. Thus, the mesolevel deals
with the interactions between DUAL agents, the emergence of non-local phenomena
out of local activities, and the dynamics of the organization of DUAL agents into
coalitions.

The macrolevel (system level) deals with formations of DUAL agents and with
whole models. Formations consist of big populations of agents and define the macro-
scopic structure of DUAL models. It is at this level where psychological concepts
such as working memory, mapping, and analogy start to play the lead. They help de-
scribe the overall behavior of DUAL-based models and to compare them with other
cognitive models and with humans.

These three levels are not independent. In fact, it is impossible to tell them apart.
To illustrate, any analysis of coalitions crucially depends on the properties of their
individual members. Conversely, a large part of the description of a DUAL agent is
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devoted to its interactions with other agents. Changes made at one level propagate to
neighboring levels, recursively. For expositional convenience, however, each level
is discussed in a separate section below.

3.1.3 Dual at the Microlevel

At this lowest level of granularity, the entity of main interest is the Dual agent—
its internal organization and operation, as well as the interactions with its peers.
Micro-agents are very important in DUAL because everything in the architecture
ultimately boils down to them and their interactions. They are the “building blocks”
that compose larger structures—coalitions, formations, and systems.

A very fundamental property of DUAL agents is that they are hybrid entities.
They bring together ideas that are usually considered in opposition. In DUAL, op-
posites are not treated as irreconcilable antagonists but rather as complementary
aspects of a harmonious whole.

Moreover, DUAL agents are hybrid in two ways. On one hand, they have both
connectionist and symbolic aspects; on the other, they serve both as representational
and processing units. These two dimensions are orthogonal and thus form the four
aspects shown in Table 3.1.

Table 3.1 Different aspects of DUAL agents. (Compare with Table 3.2.)

Representation Processing

Connectionist aspect Activation level Spreading activation
Symbolic aspect Symbolic structures Symbol manipulation

From the connectionist perspective, each DUAL agent is a unit in a neural net-
work. It has an activation level attached to it and continuously spreads activation to
other agents. From the perspective of the classical symbolic approach to cognitive
modeling, DUAL agents are symbols—they stand for something else. Concretely,
they represent various concepts, objects, relations, etc. In addition to this repre-
sentational aspect there is a procedural one: agents manipulate symbols. They can
receive symbols from other agents, store them in local memories, transform them
(thus producing new symbols) and so on.

DUAL agents interact constantly with one another. These interactions are very
important because they are the fabric that weaves agents into larger complexes.
DUAL interactions are relatively simple—they always involve only two micro-
agents. One of them takes the initiative and either reads or sends some information
to the other. Combined with the connectionist/symbolic distinction, this makes the
four aspects summarized in Table 3.2.
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Table 3.2 Different aspects of DUAL interactions. (Compare with Table 3.1.)

Type read Type send

Connectionist aspect Activation level Spreading activation
Symbolic aspect Symbolic structures Symbol exchange

As mentioned earlier, it is often convenient to speak of links instead of inter-
actions. In particular, we can speak of the attributes of a link, notably its weight
and label. We can also discuss different types of links, draw diagrams with circles
and arrows, etc. For instance, the phrase “a population of interacting DUAL agents”
translates into “a network of interconnected nodes.” Throughout this book, both
phrases mean the same thing.

3.1.3.1 Microframes

Each DUAL agent is a micro-frame. More precisely, it is the symbolic, representa-
tional aspect of a DUAL agent that is a microlevel frame. It has slots which in turn
may have facets. Slots and facets are placeholders—they are filled up with fillers.
Many fillers are references to other micro-frames and thus link the given DUAL
agent to its peers. Consider the example on Figure 3.1. It shows the agent represent-
ing the concept cup. This frame has five slots, one of which has two facets.

cup
:type :concept
:subc (liquid-holder 1.0)
:instance ((cup-1 0.3) (cup-5 0.2))
:a-link (saucer 0.5)
:slot1

:type :relation
:c-coref (cup-md-china 0.5)

Fig. 3.1 An example of a micro-frame. See text for details.

There are two major kinds of slots: general slots and frame-specific slots (or G-
slots and S-slots for short). The former have predefined semantics that is invariant
for all micro-frames. There are different kinds of general slots depending on their
label. For example, the slot type is filled by a tag denoting the type of the agent.
The slot labeled subc denotes that the concept (or class) represented by this frame
is a subclass of another concept, the slot instance is filled by (a list of) references
to specific instances of the concept, and so forth. Note that each individual reference
has a weight.
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In contrast to general slots, frame-specific slots do not have invariant seman-
tics. Thus, slot1 in frame1 may mean something very different from slot1 in
frame2. Frame-specific slots also have labels but these are only arbitrary identifiers
whose sole purpose is to distinguish one anonymous slot from the other. S-slots (and
only they) have facets. Facets can be conceived of as slots within slots. The same
set of labels applies to both G-slots and facets.

3.1.3.2 Connectionist processing

DUAL employs a dual representation scheme. Facts are represented symbolically by
micro-frames, while their relevance to the particular context is represented by con-
nectionist means. Each DUAL agent (and hence each micro-frame) has an activation
level attached to it. There is an automatic process of spreading activation that con-
tinuously restructures the knowledge base, making some nodes more accessible and
others completely inaccessible. Thus, each DUAL agent can be viewed as a node in a
connectionist network. It has an input zone, activation function and output function
(Rumelhart & McClelland, 1986).

The output of a micro-agent influences the input zones of the agents that are
interacting with it. The former acts as a sender in the interactions and the latter—
as receivers. Using the node-and-link terminology, we can say that the node sends
activation to its neighbors via links. The phrase “there is a link from agent X to
agent Y” means that agent X has a slot (or facet) filled up by a reference to Y. Each
link has a weight that controls what portion of the sender’s output is allotted to the
particular receiver. Weights are usually normalized so that the sum of the weights of
all outgoing links equals one.

The connectionist aspect of DUAL agents influences the symbolic one by deter-
mining the agent’s availability. The notion of availability contributes very much to
the hybrid nature of DUAL agents—it ties together all four aspects from Table 3.1.
Like the agent itself, availability has declarative and procedural aspects:

Visibility. A DUAL system may consist of thousands of agents, each of which
contains some particular small piece of knowledge. At any given moment, however,
only a small fraction of this large knowledge base is visible. The symbolic processes
that take place in the architecture can operate only on visible declarative elements.
In addition, more active (and hence more visible) data elements are more attractive
to the procedural machinery and thus are more likely to be taken into consideration.

Speed. The availability of a DUAL agent determines not only the visibility of
its declarative aspect but also the speed of its procedural aspect. Very active agents
work rapidly and thus determine the system’s overall line of computation, low-active
ones work slowly, and inactive ones do not work at all. As the pattern of activation
over the network of agents changes, the speed of individual processors changes
accordingly, making the computation performed by DUAL-based models dynamic
and context-dependent.
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3.1.3.3 Symbolic processing

A great deal of the information processing in the architecture is symbol manipula-
tion — deterministic construction, transformation, storage, and exchange of sym-
bolic structures. We use the general term symbolic processing to refer to these activ-
ities. They are carried out by the symbolic processors of DUAL agents. Each agent
has such processor. It also has local memory to support the processor’s work. Part
of the local memory is permanent; the rest is volatile memory. The former keeps the
micro-frame with its slots, facets, and fillers. The latter consists of an input zone and
a buffer. Thus, a typical symbolic transaction involves receiving a symbolic structure
into the input zone, comparing it with old symbols stored in the buffer, and sending
it with due modifications to some of the agents referenced in the micro-frame.

The speed of the symbolic processor depends on the connectionist activation
level of the respective DUAL agent. The exact rule for determining the speed is
based on an energetic analogy that is described in detail in Appendix C. The main
idea is that each symbolic operation requires the symbolic processor to do certain
amount of work to carry it out. Doing work requires energy, which is supplied to the
symbolic processor by the connectionist aspect of the agent. The speed of the com-
putation depends on the power (i.e. on the rate of energy supply and consumption),
which in turn is linearly related to the activation level.

3.1.4 Dual at the Mesolevel

DUAL agents are simple, they cannot do much in isolation. Therefore, they depend
on one another and form coalitions. A coalition is a set of agents and a pattern of
interactions among them. It is the entity of main interest at DUAL’s mesolevel.

Coalitions have three very important properties: they are decentralized, emer-
gent, and dynamic. None of these properties is present at the level of individual
DUAL agents (the micro-level). There are “tight” coalitions and “loose” coalitions
depending on the intensity of the interactions among their members. Tight coalitions
are characterized by heavily weighted links and by intensive exchange of symbolic
structures within the coalition. By contrast, loose coalitions are characterized by rel-
atively weak links, often temporary ones, and by little or no symbolic interchange.
There is a range between these two extremes. Moreover, coalitions do not have clear-
cut boundaries. An agent can be involved in many of them at once, and to a different
extent. Coalitions can “recruit” new members, either permanently or temporarily.
They may share members and thus “flow” gradually from one into another.

Recall that DUAL agents can be seen as representational units—each of them
stands for some single entity. By extension, coalitions of agents represent compos-
ite entities like propositions and situations. In the DUAL knowledge representation
scheme even a simple proposition is represented by a number of agents. In such
cases we say that there is a meso-frame that consists of several micro-frames.
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Meso-frames can be quite complex, much more complex than any of the partici-
pating micro-agents). In this way, the expressive power of the DUAL representations
is not limited by the restriction that each agent can have only a few slots. Coalitions
are limited only by the connectionist mechanism that controls the activation level
of their individual members and hence indirectly restricts the number of agents that
can be active at a time.

The connectionist mechanism is also responsible for determining which parts of
a meso-frame are relevant. It is possible, especially in loose coalitions, that only
part of their members are active enough to pass the threshold. Thus, only part of
the declarative knowledge stored in the meso-frame will be visible. In other circum-
stances, another part of the knowledge will be brought to the fore. This makes DUAL
meso-frames dynamic and context-dependent.

From a processing point of view, coalitions are important in DUAL because it is at
their level where non-local computation emerges. Each individual DUAL agent con-
tributes somehow to the collective performance by doing its small and local-specific
job. Each agent runs at its own speed and in parallel with other agents. To succeed
in its task, the agent usually depends on other members of its coalition. It cooperates
with them and competes with the agents from other coalitions. The net result of all
these activities is that the coalition as a whole accomplishes some computation that
is beyond the reach of any individual agent. This accomplishment has resulted from
an emergent process—it is not carried out by any centralized processor following a
rigid routine.

It is important to note that the interaction pattern among the participants in a
coalition changes dynamically over time. New agents join in, others stay back,
fall out and so on. In the node-and-link terminology, the topology of the network
changes via dynamic addition and/or removal of nodes and links. This computa-
tional dynamics plays a key role in the overall flexible and context-sensitive behav-
ior of DUAL-based models (Kokinov et al, 1996).

3.1.5 Dual at the Macrolevel

To summarize the story so far, at the microlevel we speak in terms of Dual agents,
at the mesolevel—of coalitions. Now, at the highest level of granularity we speak
of Dual formations and systems. A DUAL formation consists of a big population of
agents—on the order of hundreds or thousands in number. A DUAL system consists
of all agents that are present at a given instant of time, regardless of whether they
are active or inactive, permanent or temporary, etc.

Most of the agents and, therefore, most of the knowledge and processing in the
architecture reside in the Dual network. Most agents in this network are permanent
but additional temporary ones may be created during the computation and added to
the total pool. Similarly, most links are permanent but additional temporary ones
may be established. Thus, the topology of the network is relatively stable but not
absolutely frozen.
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The collection of all permanent nodes and links in the DUAL network comprise
the long-term memory (LTM) of the architecture. It contains the system’s knowledge
(both declarative and procedural) about the world. The LTM is big—even for simple
domains and situations one needs hundreds or thousands of agents.

In any given moment, however, only a small portion of this large formation is
actually needed. DUAL provides special mechanisms, the most important of which
is spreading activation, for effectively determining which agents (and coalitions)
are relevant to the particular task and context. Recall that each agent has an activa-
tion level that is the system’s estimate of its current relevance. So, by definition the
working memory (WM) of the architecture consists of the set of all agents whose
activation level exceeds a certain predefined threshold.

The working memory is the locus of almost all processing in DUAL and, there-
fore, we will consider it in more detail. An agent can enter the WM in two ways:
permanent agents enter it whenever they become active enough to pass the thresh-
old; temporary agents must be explicitly created and linked to the network by a
specialized node constructor. Agents stay in the working memory as long as their
activation level is maintained above the threshold. When a permanent agent “drops
out” of WM, it returns back to dormancy and could reenter the WM later. Temporary
agents, however, have no second chance.

In sum, the contents of the working memory may be expressed by the formula:

WM = active portion of LTM + temporary agents

The activation in the network originates from two special agents. The so-called
input node models the influence of the environment.1 The goal node is, in a very
rudimentary sense, the medium of the “intentions” of the system. The human user
attaches some agents to these nodes and thereby initiates the spread of activation
in the DUAL network. The activation then propagates via the links and brings some
agents from LTM to WM. There is a decay process which limits the total amount of
activation and hence the size of the working memory.

3.2 Associative Memory-Based Reasoning

We now turn to the presentation of AMBR—a cognitive model built on the basis
of the DUAL architecture. “AMBR” is an acronym for “Associative Memory-Based
Reasoning” (Kokinov 1988, 1990, 1994a, 1997). The model has been conceived
with very broad scope. Much of the work on it is still in progress. The current ver-
sion is numbered AMBR2. Previous versions were AMBR1 (Kokinov 1994a) and
AMBR2A (Petrov, 1997). We fully recognize the fact that the model as it currently
stands and is reported here is incomplete. Here and now AMBR2 is an integrated
model of analogical access and mapping. We view this version as only an interme-
diate stage of a bigger project.

1 In future models it will be replaced by a whole formation—the visual array.
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3.2.1 Main Ideas of AMBR

Since its initial conception (Kokinov, 1988) the AMBR model has advocated a set
of ideas about human reasoning in general and analogy-making in particular. They
have been distilled by Kokinov (1997) into the following three principles:

• Integration. The reasoning process cannot be partitioned into a sequence of
independent stages performed by specialized module-like components. Rather,
there are subprocesses that run together and each of them is potentially influenced
by the rest. Each computational mechanism is responsible not only to produce its
immediate result but also to create appropriate guiding pressures for other mech-
anisms. That is why AMBR is designed as an integrated model based on a parallel
emergent architecture.

• Unification. Analogy is not a specific mode of reasoning. Rather, deduction, in-
duction (generalization), and analogy are slightly different versions of the same
uniform reasoning process. The same computational mechanisms are used in all
cases—there is some sort of perceptual processing that builds internal represen-
tation of the problem being solved, there is some (sub)process that accesses rel-
evant information from long-term memory, there is some (sub)process that tries
to map the new problem to previous knowledge, etc. Deduction, induction, and
analogy all fit into the same framework, the differences being in the outcome of
the processing but not in the processing itself. Thus the term deduction applies
to cases when the new problem happens to match with a general old schema,
induction goes the other way around, and analogy applies when the two situa-
tions are at approximately equal level of abstraction. Conceptualized in this way
deduction and induction are just two extremal (and hence very important) points
on the analogy continuum. Therefore AMBR is designed as a general model of
reasoning with emphasis on analogy-making.

• Context-sensitivity. Human reasoning is context-sensitive. Its outcome depends
not only on the task and long-term memory knowledge but also on the environ-
mental setting, recent activities of the reasoner, etc. AMBR is designed with the
explicit aim to reflect this context-sensitivity of human thinking.

This book focuses on the first point from this list—integration. Deduction, induc-
tion, context, and priming effects are treated elsewhere (e.g., Kokinov, 1990, 1992,
1994a; Kokinov & Petrov, 2001; Kokinov & Yoveva, 1996). Our present goal is to
explicate the principle of integration of subprocesses in more detail.

As discussed in Chapter 2, theories of analogy-making frequently partition the
process into a sequence of stages (e.g., Gentner, 1989). The computational models
that stem from these theories typically involve separate “engines,” each of which
works on its own and dovetails with the next. The output from the retrieval module
is fed into the mapping module, whose output in turn is fed to the transfer module,
etc. This “pipeline paradigm” is illustrated in Figure 3.2. Each module influences
the next only through the data structures it passes to it (cf. Fodor, 1983).

A problem with this approach is that it depends on the tacit assumption that all
these stages are separable. While this assumption definitely merits careful consider-
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perception retrieval mapping transfer evaluation

Fig. 3.2 Schematic description of the “pipeline” paradigm of analogy-making. The whole process
is broken into a sequence of independent stages. They can interact only through the data structures
(not shown in the figure) that each of them feeds to the next.

ation, it is questioned by a number of researchers (Chalmers, French, & Hofstadter,
1992; Kokinov, 1994a; Hummel & Holyoak, 1997). One question that has been es-
pecially controversial2 is whether perception (representation building) and mapping
are separable or not. This is a special case of the larger controversy about the puta-
tive modularity of the cognitive architecture (e.g., Anderson & Lebiere, 1998; Fodor,
1983; Rumelhart & McClelland, 1986). There is psychological evidence for various
interaction effects between various components in Figure 3.2 (e.g., Catrambone &
Holyoak, 1989; Hummel & Holyoak, 1997; Kokinov, 1994a; Kokinov & Petrov,
2001; Loewenstein, Thompson, & Gentner, 1999; Medin, Goldstone, & Gentner,
1993). Together with some conceptual arguments (Chalmers et al., 1992), this ev-
idence rules out a strict serial pipeline. To our knowledge, no mainstream analogy
researcher defends the extreme position depicted in Figure 3.2. What is being de-
fended instead (e.g., Forbus, Gentner, Markman, & Ferguson, 1998) is the reentrant
modular scheme depicted in Figure 3.3. It allows for the possibility to reenter an
earlier stage of the pipeline and repeat the processing in light of intermediate results
produced on a later stage. This interleaves the stages iteratively and can account
for many interaction effects. The so-called map-analyze cycle (Falkenhainer, 1988,
1990b; Forbus et al., 1998) is a closely related idea.

perception retrieval mapping transfer evaluation

Fig. 3.3 Schematic description of the reentrant modular paradigm of analogy-making. The flow of
control is more flexible than the strict pipeline in Figure 3.2. An earlier stage can be reentered and
repeated in light of intermediate results produced on a later stage. This iterative interleaving can
account for various interaction effects. Compare with Figure 3.4.

For example, a model can start with a hand-coded description of a target situ-
ation. This description is used as a memory probe to retrieve, via MAC/FAC, one
or more candidate source episodes from long-term memory. One of these sources
is then mapped to the target via SME. Up to this point, we have purely feed-
forward processing consistent with the pipeline in Figure 3.2. Consider a case,
however, in which the target contains a statement such as hot(water-12) that

2 This controversy has subsided since 1998. In Section 2.2.6 (p. 19) we mention some recent de-
velopments in connection with Lovett’s (2012) structure-mapping models of geometric analogies.
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remains unmapped because the source uses a relational representation such as
temperature-of(milk-33, high-T). This can trigger some mechanism
for re-representation (which can be considered a form of high-level perception)
that uses domain knowledge to recast hot(water-12) as temperature-of(
water-12, high-T). This modified target description is then recycled back to
the retrieval stage in Figure 3.3 and a new source episode may be retrieved from
LTM, mapped to the target, and so forth. This map-analyze cycle can be repeated
several times (Falkenhainer, 1988, 1990b; Forbus et al., 1998).

It is instructive to compare the above example with Hofstadter (1984) and
Mitchell’s (1993) Copycat system. Copycat emphasizes the intimate interplay be-
tween high-level perception and analogical mapping. Indeed, Chalmers et al. (1992,
Abstract) argue that “perceptual processes cannot be separated from other cognitive
processes even in principle.” And yet, Copycat’s internal organization can be rein-
terpreted to emphasize the similarity with the reentrant scheme in Figure 3.3. The
basic elements of Copycat’s processing are the so-called codelets—small pieces of
code, each designed to perform a particular type of task. There are many codelets
waiting to run at any given time, in a pool (called the Coderack) from which one
codelet is chosen stochastically at every cycle. Now, the codelet types can be clas-
sified into categories that approximately map onto the traditional decomposition in
terms of perception, mapping, and transfer. Mitchell (1993, Appendix C) lists sev-
eral such categories, including “description-building, correspondence-building, and
rule-building” codelets, among others. Given that only one codelet is allowed to run
at any given time, each Copycat run can be reinterpreted as a very fine-grained in-
terleaved sequence of perception, mapping, and transfer. In this interpretation, the
differences with the view advocated by Forbus et al. (1998) are merely qualitative,
not categorical. A Copycat run typically involves hundred of codelet steps, whereas
structure-mapping models typically perform only a handful of iterations through
the map-analyze cycle. The important similarity, however, is that both frameworks
interleave perception, mapping, and transfer, albeit at very different grain sizes.

Chalmers, French, and Hofstadter (1992,) try to resist this interpretation by point-
ing out that “the situation-preception and mapping processes take place simulta-
neously. . . Codelets of both types are in the pool together.” They also note that
Copycat “makes no important distinction between structures built for the purpose of
situation-perception . . . , and those built for the purpose of mapping. . . Both types
of structures are built up gradually over time, and both contribute to the program’s
current understanding of the overall situation.” (Chalmers et al., 1992, p. 206). Also,
these authors emphasize that the grain size of individual codelets is orders of mag-
nitude finer than that of a problem-solving episode—most Copycat runs involve
hundreds or even thousands of individual codelet steps. Thus, the sequentiality at
the codelet level can be ignored and the macroscopic process analyzed in terms of
parallel subprocesses. In fact, Hofstadter (1984, 1995) refers to this style of compu-
tation as parallel terraced scan.

This is true enough but also is, at least in part, a matter of interpretation. More-
over, the distribution of codelets in the Coderack undergoes macroscopic shifts dur-
ing a run. Description-building codelets fire in large numbers early on, following by
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a “wave” of correspondence-building codelets, and finally rule-building codelets.
This can be interpreted as a blurred version of Figure 3.3. In some ways, Copycat
even imposes explicit sequential constraints on the flow of control. Certain types of
codelets, for example, can run only after certain types of structures (e.g., successor
groups) have been discovered. There are processing events at the macroscopic level
too.3 This is clearly seen on Copycat’s showcase example—the celebrated xyz prob-
lem (Hofstadter, 1984, 1995; Mitchell, 1993). It involves the initial construction of
a straightforward problem description that is later found to be incapable of gener-
ating a valid solution. In response to a snag like this, the system triggers certain
emergency measures: the so-called computational temperature is clamped to a high
value, breaker codelets are released, etc. On a successful run, these measures cause
the dismantling of the original description and replacing it with an alternative. In
the vocabulary of Forbus et al. (1998), this strongly resembles backtracking to the
perceptual stage and then repeating the mapping with the new representation.

In our opinion, these two perspectives are not irreconcilable opposites, one of
which must be wrong if the other is correct. Rather, we prefer to think of them as
two complementary lenses for looking at the world and at the cognitive architec-
ture. Through the modular lens, the world appears to consist of clear-cut objects
belonging to well-defined categories. The mind appears modular or quasi-modular.
Authors who habitually look through this lens (e.g., Forbus et al., 1998) tend to
write about domain-general engines and stages, use formal logic in their models,
and draw box-and-arrow flowcharts in their publications. The other lens is kalei-
doscopic and not always quite focused. Through it, the world appears blurred and
in flux. The mind is holistic, interactive, and creative. Authors who habitually look
through this lens (e.g., Hofstadter, 1995; Linhares, 2000) tend to write about fluid
concepts and slippages, aim to persuade through evocative metaphors rather than
formal arguments, and eschew flowcharts in their publications.

We do not know what the world (and the mind) really are in
themselves, unmediated by lenses or interpretative schemes (Kant,
1781/1997; Quine, 1968). We must use some lens at any one time,
but we can switch among alternative lenses if we choose to do so.
This is an excellent way to avoid theoretical myopia and we con-
sciously try to practice it in our research whenever possible. One

remarkable fact is that, even through the modular lens, the world does not appear
completely modular. The reentrant connections in Figure 3.3 illustrate that. Con-
versely, even through the fluid lens, the world does not appear completely seamless.
Copycat’s macroscopic processing events illustrate that. The situation is summa-
rized well by the Yin-Yang symbol on the left. Notice the conspicuous presence of a
white dot in the middle of the black domain and vice versa. This prevents either side
from winning decisively over the other. We prefer not to take sides but acknowledge
that both points of view are informative, fruitful, and worthy of careful investigation.

3 Copycat’s successor Metacat (Marshall,1999, 2006) adds several components to the architecture.
One of them is the Temporal Trace that stores an explicit temporal record of the most important
processing events of this kind. Hitting a snag is a very salient event.
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With this important qualification, most of this book describes the view seen
through the fluid lens. AMBR adopts an explicitly interactionist approach and treats
analog access, mapping, and transfer as parallel subprocesses rather than serial
stages. These subprocesses are still ordered in time as suggested by the pipeline
approach—for instance mapping can only start after at least a few agents are ac-
cessed from LTM. However, there is no requirement that a stage must end before
the next one could start. On the contrary, subprocesses overlap considerably and can
interact. This results in the cascade illustrated in Figure 3.4.

perception

access

mapping

transfer

evaluation

Fig. 3.4 Schematic description of the interactionist paradigm of analogy-making. There are sub-
processes that overlap in time and can influence each other. Compare with Figure 3.3.

The interactionist approach seems problematic at first sight because each stage
(or subprocess for that matter) depends on the result of the previous one. Indeed,
how could the target problem be mapped to the source when it has not yet been even
retrieved from memory?! It seems a logical necessity that the mapping comes after
the retrieval. Similarly, the perceptual stage should come first, the transfer should
follow the mapping, and so on.

AMBR overcomes this difficulty by representing information in smaller chunks.
The model does not represent episodes as big units that are either manipulated
wholesale or not at all.4 Instead, it represents them as coalitions of small elements
susceptible of piecemeal manipulation. This allows each subprocess to begin as soon
as the previous one has produced some partial results. The analogy with Copycat’s
parallel terraced scan is obvious. The difference is that Dual postulates parallelism
among the agents, whereas Copycat’s codelets run one at a time.

As soon as AMBR’s perceptual mechanisms have built internal representations
of a few elements of the target problem, the access subprocess starts looking in the
long-term memory for information that relates to these new elements. The concepts,
propositions, episodes, etc. that are accessed in this way can now influence the per-
ception of the target. In addition, they trigger the mapping subprocess which starts
constructing the first tentative correspondences. If a promising candidate correspon-
dence emerges, it could influence both perception and access. Gradually, all subpro-
cesses are at work and more and more is perceived, accessed, mapped, transferred,
and so forth.

4 Therefore we prefer the term analog access to retrieval.
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This is the upward motion of the “wave” of the reasoning process. Sooner or later
the wave recedes. A stable representation of the target problem has been built and
the perceptual mechanisms go off stage. A source episode wins the competition with
alternative episodes from memory and the access subprocess diminish. One by one,
all subprocesses terminate roughly in the order they have started. In this way there is
something that could be characterized roughly as a sequence of stages. However, the
boundaries between the AMBR “stages” are fuzzy and each one could in principle
interact with any other.

Before closing this section we must make one final disclaimer. The 1998 ver-
sion of the model implements only two of the subprocesses drawn in Figure 3.4:
access and mapping. Thus AMBR2 avails itself to the same simplifying assumption
that was criticized above. It artificially separates these two subprocesses from the
rest. We admit this is a major flaw of the 1998 version. We hope, however, that the
model is open-ended enough so that the missing components could be added without
forcing radical changes in the existing ones. Chapter 7 contains some preliminary
efforts in this direction. Until then, the exposition concentrates on what was actually
implemented and running as of 1998.

3.2.2 Ambr Protagonists: Concepts, Instances, and Hypotheses

As any model based on the DUAL architecture, AMBR consists of nothing but agents
of various kinds. They represent the knowledge and do all information processing
in the model. Therefore the natural way to begin the presentation of AMBR is to
introduce the various types of agents used by it.

Each AMBR agent is a DUAL agent and as such has a micro-frame (see Sec-
tion 3.1.3.1). The micro-frame is a bundle of labeled slots, one of which serves to
designate the type of the agent. The label of this slot is type and it is filled by
a list of tags such as :concept, :instance, :hypothesis, :temporary,
etc. These tags are used in conjunction with one another to account for the variety
of agents employed by the model. For example, the type slot of some agent can
be filled by the list (:temporary :instance :relation) thus stating that
the agent in question is a temporary agent representing an instance of some relation.

There are rules that restrict the combinations among different type tags. For in-
stance all agents of type :hypothesis are also :temporary. Therefore, de-
spite the big number of possible type combinations there are only three major types
of AMBR agents: concept-agent, instance-agent, and hypothesis-agent. These major
types have subdivisions as illustrated in Figure 3.5.

Concept-agents (or concepts for short) represent classes of entities. The taxon-
omy of classes is represented by subc and superc links between the concepts.
Some concepts are classes of objects such as teapot and liquid-holderwhile
others represent relations such as temperature-of and cause. A concept agent
may also have references to some of its instances, to be associatively related (via
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AMBR-agent

concept instance hypothesis

permanent temporary embryo mature winner

Fig. 3.5 Main types of AMBR agents.

a-link) to other concepts, etc. All concepts are permanent agents and form the
backbone of AMBR’s semantic memory.

Instance-agents (or instances for short) represent individual instances. Each in-
stance agent has an inst-of slot filled by a reference to the concept agent rep-
resenting the class of the instance (Figure 3.6). There are a several other slots with
appropriate labels that relate the instance to other instances, concepts, or hypotheses.
Concept and instance-agents are sometimes collectively called entity-agents.

liquid-holder:
:type (:concept :object)
:subc container
:superc (teapot bottle cup)
:a-link liquid

teapot:
:type (:concept :object)
:subc liquid-holder
:instance (teapot-1 tpot-73)
:hypoth teapot<->bottle

teapot-1:
:type (:instance :object)
:inst-of teapot
:situation sit-ABC
:hypoth (teapot-1<->bottle-3

teapot-1<->bottle-4)

Fig. 3.6 Example of concept-agents, instance-agents, and some of the links between them. Each
micro-frame has additional slots (not shown in the figure). All connectionist aspects are omitted.

Concepts and instances alike are characterized by one more tag in their type list—
:object, :relation, or :situation. These tags are mutually exclusive. An
:object tag means that the micro-frame represents some object or a class of ob-
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jects. All agents in Figure 3.6 belong to this category. In contrast, the :relation
tag is used to designate micro-frames that represent some relation. Such micro-
frames usually have S-slots (see Section 3.1.3.1) that represent the arguments of the
relation. The AMBR representation scheme allows to represent both specific proposi-
tions such as made-of(teapot-1, metal-1) and general propositions such
as made-of(teapot, metal). The details of the knowledge representation
scheme are given in the next chapter.

Situation-agents (or situations for short) are a special kind of instance-agents.
They are distinguished by the tag :situation in their type slots. Contrary to
the name of the tag, such agents do not represent whole situations. Rather, they
represent the spatio-temporal contiguity of a coalition of instances. Most instance
agents are affiliated to some situation. The medium of this affiliation is a slot labeled
:situation filled by a reference to the respective situation-agent. In the exam-
ple above, the agent teapot-1 is affiliated to sit-ABC. The other elements of
this situation (both objects and propositions) will have the same reference in their
respective slots. Thus the situation-agent that they all refer to represents the fact that
all these instances have been perceived or inferred or remembered on the same oc-
casion. On the other hand, there need not be any links from the situation agent to its
elements. This is very important for the decentralized representation of situations in
AMBR. It is a whole coalition of instance-agents that represent a particular problem,
scene, episode, and so forth. Each participant is linked to only a few other elements
and no one “knows” the entire situation as one encapsulated unit.

The mechanisms for analogy-making try to establish correspondences between
instances from different situations, between their respective concepts, and so on.
These correspondences are represented in the model by correspondence-agents (not
shown in Figure 3.5), the most important type of which are the so-called hypothesis-
agents (or hypotheses for short). Each hypothesis represents a tentative correspon-
dence between two entities based on one or more justifications. The justification of a
hypothesis is the reason for its creation and maintenance by the system. Each AMBR
hypothesis must have a justification. (This is one big difference between AMBR and
ACME.) The justification is either semantic or structural, represented by a concept
or hypothesis agent respectively.

The hypothesis-agents are organized in a constraint satisfaction network (CSN).
Coherent hypotheses are connected with excitatory links while contradictory ones
inhibit each other. This is the main instrument for achieving global consistency
based on local computations. This approach follows the ACME model of Holyoak
and Thagard (1989) but there are important differences (discussed later in this book).
Hypothesis agents have a special activation function (cf. section 3.1.3.2) that gives
them competitive power in the CSN.

Hypothesis agents are constructed on the initiative of their justifying agent. In the
beginning of their life cycle they are created as embryo hypotheses. Those embryos
that do not coincide with an existing hypothesis establish themselves and become
mature hypotheses. They compete with the other hypotheses in the CSN and become
either winner or loser hypotheses.
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The presentation of the last few pages emphasized mostly on the symbolic declar-
ative aspect of AMBR agents. Like all agents in the DUAL architecture, however,
they are hybrid entities and have connectionist and procedural aspects as well (see
Table 3.1). Different types of agents have different procedural knowledge and thus
participate in the various computational mechanisms in the model.

3.2.3 AMBR Mechanisms

This section outlines the six basic mechanisms used in AMBR2: spreading activa-
tion, marker passing, constraint satisfaction, structure correspondence, rating, and
skolemization. The presentation is intended to give a broad and relatively self-
contained overview of these mechanisms and to show how they fit together. Chap-
ter 5 provides a rigorous and much more detailed coverage.

3.2.3.1 Spreading activation

As stated earlier, each AMBR agent has a connectionist aspect and acts as a unit in
a neural network (Section 3.1.3.2). It receives activation from the agents that inter-
act with it, transforms this connectionist input according to its activation function,
and in turn outputs activation to other agents along weighted links. Thus there is
a pattern of activation over the whole population (or network) of agents. This acti-
vation originates from some special agents (Section 3.1.5) and then propagates the
network. There is a decay factor and various thresholds that restrict the spread of
activation.

This mechanism is of paramount importance in AMBR. It provides a dynamic
estimate of the relevance of each individual agent. These estimates are then used
by other mechanisms for various purposes. It defines the working memory of the
model by bringing some agents above the threshold while keeping irrelevant ones
away. This is the foundation of the access subprocess in analogy-making. Spreading
activation also underlies the relaxation of the constraint satisfaction network.

Activation plays another very important role in AMBR (and DUAL in general).
It is the energy supply for the symbolic aspect (Appendix C). More active agents
work faster and are more visible to other agents (Section 3.1.3.3). In this manner,
changes in the pattern of activation affect everything else in the model. This makes
it dynamic, emergent, and context-sensitive (Kokinov, Nikolov, & Petrov, 1996).

3.2.3.2 Marker passing

Marker passing (MP) is the symbolic counterpart of spreading activation. It has
been developed within the semantic network tradition (Quillian, 1966; Fahlman,
1979; Charniak, 1983; Hendler, 1988, 1989). In its most basic form it is a tool for
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answering the question, “Given two nodes in the network, is there a path between
them?” The idea behind the marker passing is simple: the two nodes of origin are
marked, they mark their neighbors, which in turn mark their neighbors, and so forth.

AMBR markers originate in instance-agents and are then passed by concept-
agents upward in the class hierarchy. That is, markers can go only through links la-
beled :inst-of and :subc. For example, a marker can originate from teapot-1
and then pass through teapot, liquid-holder, container, artifact,
etc. Another marker starting from bottle-7 could go through bottle and
meet the first one in the concept-agent liquid-holder. The latter will detect
this marker intersection and create a hypothesis that teapot-1 corresponds to
bottle-7. The concept node becomes the justification of the new hypothesis. In
this way, the marker passing gives rise to semantically grounded hypotheses and
triggers the constraint satisfaction mechanism.

The markers accumulate in the local buffers (see section 3.1.3.3) of concept-
agents and provide a record of all instances of the particular class that are active at
the moment. This information is then used by other mechanisms for various pur-
poses.

3.2.3.3 Constraint satisfaction

The marker-passing and structure-correspondence mechanisms create hypotheses
on the basis of local information only. The constraint satisfaction mechanism is re-
sponsible to achieve consistency at the level of whole coalitions. To that end, AMBR
builds a constraint satisfaction network (CSN) with appropriate links between hy-
potheses. The pattern of activation in the CSN then gradually reaches a stable state
in which a set of hypotheses emerge as winners while all others are suppressed.

In contrast with ACME (Holyoak & Thagard, 1989), the constraint satisfaction
network in AMBR is tightly interconnected with the main network. This allows
seamless integration with other mechanisms in the model. For example, suppose
a particular hypothesis wins the competition and becomes highly active. Part of this
activation spreads to the concept-agents involved in it. When the concepts become
more active they process markers faster, which will tend to generate more hypothe-
ses of the same kind. If the hypothesis is about instances, it will activate them and
they in turn will support the other instances of the same coalition, etc.

Another important property of the constraint satisfaction network in AMBR is
that it is built in a decentralized and incremental fashion. Individual hypotheses
come one by one in the order of their creation, which reflects the system’s current
estimates of the relevance of the elements involved. This decentralized creation pro-
cess raises the question of how to avoid duplication of hypotheses and to establish
the links needed for the relaxation algorithm. This is the responsibility of the hy-
potheses themselves aided by the so called secretaries.

Each instance- or concept-agent has a secretary associated with it. The secretary
is not a separate agent but a part of the respective agent itself. The job of the sec-
retary is to keep track of the hypotheses involving the agent in question. It records
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them in the :hypoth slot of the agent (cf. Figure 3.6) and handles hypothesis reg-
istration requests.

Whenever an embryo hypothesis is born it contacts the secretaries of its two
elements and requests registration. The secretaries receive these requests, consult
their records, and send secretary answers to the hypothesis. There are several kinds
of answers but basically they all belong to one of the following two major types. If
the new hypothesis is a duplicate of an existing one, it is commanded to resign in its
favor. The resigning hypothesis hands over its justification to the favorite and then
fizzles out. In this way many hypotheses in the CSN have several justifications even
though each of them is born with only one. The links to and from justifications are
excitatory and connect the CSN with the main network.

The second major type of secretary answer is establish. It is sent to hypotheses
that represent some novel correspondence. When the embryo hypothesis receives
such answer it becomes mature and enters the competition with other mature hy-
potheses. The answer contains a list of the alternative hypotheses registered at the
secretary. They are the rivals of the new one and it creates symmetrical inhibitory
links with them. In this way each mature hypothesis becomes incorporated in the
network. When it achieves this status it starts generating its own “child” hypotheses
via the structure correspondence mechanism.

3.2.3.4 Structure correspondence

The structure correspondence (SC) mechanism generates new hypotheses on the
basis of existing ones. It is also responsible for the excitatory links between coherent
hypotheses. Either way, it fosters the systematicity of the mapping that emerges out
of the constraint satisfaction network (Gentner, 1983).

There are several types of structure correspondence in AMBR: bottom-up, top-
down, weak, etc. They are explained in detail in Chapter 5. This section only con-
veys the general idea by means of assorted examples.

Suppose there is a mature hypothesis involving two instance agents, e.g.,
teapot-1<->bottle-3. The bottom-up SC will create a new embryo hypoth-
esis at the level of concepts. Namely: teapot<->bottle. If the instances are
affiliated to situations, the structure correspondence mechanism will construct an
embryo hypothesis about them too, e.g., sit-ABC<->sit-XYZ. These new hy-
potheses are likely to coincide with ones created earlier by some other agent. In
these cases the secretaries of, e.g., teapot and sit-XYZ will detect the dupli-
cation and the redundant hypotheses will be forced to resign in favor of the older
ones. Still, excitatory links between teapot-1<->bottle-3 and the respective
concept- and situation-level hypotheses will be established. This creates the pressure
that instances of the same concept and/or the same situation are mapped consistently
to instances of the other concept or situation, and vice versa.

The top-down SC applies when there is a mature hypothesis involving proposi-
tions. For instance, suppose that the agent made-of-1 represents the proposition
that teapot-1 is made of metal-1. Suppose further that made-of-3 states that
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bottle-3 is made of glass-3. Then the hypothesis made-of-1<->made-of
-3 will generate the hypotheses teapot-1<->bottle-3 and metal-1<->
glass-3. (It will also generate bottom-up hypotheses such as made-of<->
made-of, etc.)

The hypothesis teapot-1<->bottle-3, however, has probably been con-
structed already by the marker passing mechanism (because both are liquid hold-
ers). The secretaries will detect this duplication and the SC-generated embryo will
resign in favor of the MP-generated mature hypothesis. In the end the latter will have
two justifications: semantic and structural. Each additional justification improves the
competitiveness of this hypothesis in the CSN.

3.2.3.5 Rating and promotion

Another responsibility of the secretary is to rate the relative success of each hypothe-
sis on its secretary list. It checks at regular intervals who is the current leader among
the hypotheses. That is, which one has the greatest activation level. The secretary
maintains ratings for each hypothesis. Ratings are numerical values indicating how
long the particular hypothesis has led the competition. When a hypothesis maintains
a leading status long enough, it is promoted to winner status.

Thus, the rating mechanism promotes current leaders into final winners. This is
done via a kind of competitive learning algorithm. The secretary performs rating
surveys at regular intervals. Each survey detects the leader and increases its rating
at the expense of the ratings of its competitors. The magnitude of the change is
proportional to the margin between the activation levels of the leader and the sec-
ond best hypothesis. When a particular rating reaches some critical level, the rating
mechanism triggers the promotion mechanism for the respective hypothesis.

In addition to promoting winners, the rating mechanism also eliminates losers.
When a particular rating drops too low and the activation level of the respective
hypothesis is also low, the hypothesis is sent a fizzle message that causes it to drop
out of the system. Non-leader hypotheses that maintain a reasonably high activation
level are kept as plausible alternatives to the leader. In this way the constraint satis-
faction network is trimmed of very implausible hypotheses without ruling out any
possibility a priori. This adds another dimension to the dynamics of the CSN—its
topology changes both by adding and removing nodes and links.

Still another function of the rating mechanism is to trigger the skolemization
mechanism upon necessity.

3.2.3.6 Skolemization

AMBR skolemization is a technique for augmenting the description of some par-
ticular episode on the basis of general semantic information. This is an advanced
topic that is discussed in detail in Chapter 5. This section provides an example that
conveys the overall idea.
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Suppose that the target situation contains a teapot and its material is explicitly
represented: teapot-1 is made of metal-1. Suppose further that teapot-1 is
mapped to bottle-3 belonging to some other situation. The description of the lat-
ter, however, lacks explicit proposition about the material of bottle-3. Thus there
is no counterpart of the target proposition made-of(teapot-1, metal-1).

The semantic memory, however, contains a general proposition that bottles are
(usually) made of glass. These general proposition is represented by an instance of
the relation made-of. This instance is not affiliated to any situation (cf. section
3.2.2) and one of its arguments is a concept-agent. For example, it might be of the
form made-of(bottle, prototype-glass). This proposition is handled
by AMBR mechanisms in the usual way—it emits a marker, that marker intersects
in the concept-agent made-of with the marker emitted by the specific proposition in
the target, the marker intersection gives rise to a hypothesis, etc. Suppose that this
general hypothesis wins the competition in the constraint satisfaction network (for
lack of a better alternative).

The rating mechanism detects that the leading hypothesis involves a general
proposition and triggers skolemization. The latter will construct a skolem propo-
sition that concretizes the general proposition. In the example above, the mecha-
nism will create skolem instances of the concepts made-of and glass. No in-
stance of bottle is needed because the recipient situation already has one as indi-
cated by the marker from bottle-3 stored in the local buffer of bottle. The
final outcome of the skolemization is that the material of bottle-3 is taken by
default to be sk-glass-3, where sk-glass-3 is a skolem instance of the con-
cept glass. This new agent affiliates to the situation containing bottle-3. It
then emits a marker, which will intersect in the concept material with the marker
originating from metal-1. This will create the semantically-grounded hypothesis
metal-1<->sk-glass-3 which enters the competition with high chances of
success as teapot-1 is already mapped to bottle-3.

3.2.4 Overview of a Run

This final section pulls everything together and shows how the computational mech-
anisms described above can be applied to the task of analogy-making.

In the present version of AMBR, the work on a problem begins with a hand-
coded representation of the target situation. Some of the agents that participate in
the (decentralized) description of this situation are attached to the special nodes that
are sources of activation in the model. The goal element(s) are attached to the goal
node; some of the other elements are attached to the input node, thus mimicking the
perceptual mechanism. The input list can also include elements that do not belong
to the target situation, thus modeling the external context. It is possible that target
elements are presented to the system not simultaneously but incrementally, giving
rise to various order effects.
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Once the target elements are connected to the source nodes, the associative mech-
anism begins to operate. The activation spreads through the long-term memory and
brings relevant conceptual and episodic information to working memory. Shortly
after, the marker-passing mechanism joins in as instance-agents emit markers upon
entering the WM. The markers begin propagating the active portion of the network.

Marker intersections provoke the construction of hypothesis-agents and thereby
trigger the constraint-satisfaction mechanism. After consulting the secretaries, the
hypotheses initiate the structure-correspondence mechanism. The secretaries regis-
ter more and more hypotheses and rate their relative success.

Gradually, a number of agents enter the working memory. The activation does
not spread unrestricted, however, and the intensity of memory access declines as the
decay of activation prevents the nodes that are too remotely relevant from passing
the threshold. Usually, two or three situations are retrieved in full and a few others
only partially. These are the candidates for base analogs. In addition, the relevant
concept-agents are also active and ready to guide the mapping.

The associative mechanism never stops completely because agents occasionally
get in or out of the working memory. Moreover, the associative mechanism is re-
sponsible for controlling the speed of the symbolic aspect as well as for settling the
constraint satisfaction network.

Meanwhile, the marker-passing mechanism has generated several hypotheses.
In turn, they have created additional hypotheses via the structure-correspondence
mechanism. The CSN has thus become fairly elaborate and winning correspon-
dences begin to emerge. The hypotheses standing for such correspondences are pro-
moted to winners. This makes them even more active and provides strong support
for the respective entities in the main network. In this way, the base situation that
best matches the target is fully and unambiguously accessed. All its elements enter
working memory. The skolemization mechanism adds even more elements if such
are needed to better match the target.

Sooner or later all secretaries of the target promote their winners. The mapping
constructed by the model can be read from the set of winner hypotheses. (In fact, the
system maintains a “working answer” throughout the whole run. It is often unnec-
essary to wait for the end.) The mechanisms for transfer should have been triggered
at that time. They are not yet implemented in the current version of the model, how-
ever.

It should be emphasized that everything described so far happens as a result of a
dynamic emergent process. There is no central executive that controls the operation
of the system. Instead, a multitude of micro-agents interact with their immediate
neighbors and their local activities give rise to macroscopic phenomena that an ex-
ternal observer could interpret as analog access, mapping, etc.



Chapter 4
Knowledge Representation

This chapter is devoted to knowledge representation in AMBR. It shows how the
DUAL representation scheme (Kokinov, 1988, 1994a; Petrov 1997) is actually put
to work in the model.

4.1 Domain

This section introduces the domain used for the simulation experiments reported in
this book. It should be noted that AMBR mechanisms do not depend on this partic-
ular domain. It is simply a convenient testbed for the model.

The domain involves simple everyday tasks in a kitchen. It deals with concepts
such as water, high-temperature, baking-dish, and food. Typical sit-
uations include heating and cooling liquids, boiling eggs, etc. For example, the
knowledge base contains the following episode:

There is a teapot and some water in it. The teapot is made of metal and its color
is black. There is also a hot-plate. The teapot is on the plate. The temperature of the
plate is high.

The goal is that the temperature of the water is high.
The outcome of this arrangement is that the temperature of the teapot is high

because it is on the hot plate. In turn, this causes the temperature of the water to be
high.

Equipped with episodes of this kind, AMBR is then presented with situations in
which some of the objects necessary for achieving the goal are missing. For instance,
the goal is to heat some milk in a teapot but no heating source is mentioned. Another
kind of problem is to give all the objects in place and then ask what will happen,
etc.

We admit that these problems are very modest by human standards. AMBR does
not attempt to solve the radiation problem or to understand the Rutherford atom. In-
deed, its abilities are even more modest than suggested by the description above. De-
spite appearances, AMBR has no idea about what “real world” water actually looks
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like. It has so little “knowledge” that in fact it works in a micro-domain and this
should be taken into account when evaluating its performance (Chalmers, French
& Hofstadter, 1992). We argue, however, that reliance on such micro-domains is
methodologically justified.

4.2 Desiderata

As simple as it is, AMBR’s domain reveals a number of requirements that the knowl-
edge representation scheme must meet to allow successful problem solving. We
believe that the same requirements hold for any domain and become increasingly
important for more complex ones.

4.2.1 Rich Descriptions of Episodes

The episodes stored in the long-term memory should be described in enough detail.
This is not crucial for the mapping process but is absolutely necessary for transfer
and evaluation. In particular, the causal structure should be quite elaborated. In the
example above, the hot plate is important for heating the water but the color of the
teapot is not. Without enough causal information the model could assume that in
order to heat milk it should put it in a black teapot.

There is an additional complication—the rich representation of the source analog
hinders its mapping to the target problem. The description of the latter is normally
quite incomplete and, therefore, there are many elements in the source that do not
have any counterpart in the target. Paradoxically, if there are two potential source
analogs in the LTM, the one with sketchier description will map better to the target
even though it may well be less useful for solving the problem. In the extreme case,
a source analog that has absolutely nothing more than the target will achieve perfect
match but zero utility.

One way around this obstacle is to partition the source descriptions into initial
conditions, goals, solutions, etc. The target problem could then be mapped selec-
tively to the appropriate sections of the base (e.g., Holyoak & Thagard, 1989). This
approach, however, seems too rigid as it precludes any possibility of mapping ele-
ments from different compartments. Human problem solving does not observe such
boundaries. For instance, the goal of one situation could map to some unintended
side effect in another.
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4.2.2 Semantic Knowledge

Most analogy models use semantic knowledge for two purposes only—as a source
of constraints on mapping and for similarity-based retrieval of episodes from long-
term memory (e.g., Falkenhainer, Forbus & Gentner, 1986; Holyoak & Thagard,
1989; Keane & Brayshaw, 1988; Kokinov, 1994a; Hummel & Holyoak, 1997). It is
clear, however, that human analogy-making uses semantic knowledge in much more
diverse ways than that.1 Even in our tiny domain the general fact that plates are heat
sources and as such are used to heat things is of obvious importance when asking
how to heat water. Still, such knowledge goes unused if the model deals exclusively
with finding correspondences between two episodes.

One challenge for the research community is to design mechanisms for using
semantic knowledge in analogy-making. The skolemization mechanism proposed
in Section 5.7 is a step in this direction. Note that one of the implications of this
approach is that it blurs the boundary between deductive and analogical reasoning
(which, according to our views, is quite fuzzy anyway; Kokinov, 1988).

4.2.3 Flexibility and Re-Representation

A third desideratum closely related to the first two is that episode representations
should be flexible. Facts that follow from general rules need not be stored explicitly
in each episode. They may be omitted from the representation and added again later
upon necessity. The model should be able to switch between alternative representa-
tions such as hot(X) vs. temperature-of(X,high-T) or left-of(X,Y)
vs. right-of(Y,X).

There is a tacit assumption in analogy research about the asymmetry between
source and target situations. It is quite often taken for granted that the target must
conform to the source, whereas the latter remains static. In our view the process of
analogy-making consists of bringing both situations closer to each other by modi-
fying either one when appropriate. In this way one and the same base episode can
map to various targets and each mapping entails reconceptualization of the base.

4.3 Representation of Concepts and Instances

With full awareness that AMBR agents are nothing but ungrounded symbols (Har-
nad, 1990), we follow the common AI practice to use mnemonic names like milk,
taste-of, and cause. Those names are irrelevant for the model itself; the pro-
gram would work just as well (or not-so-well) had the agents been named ag001,

1 Moreover, research on memory suggests that remembering old episodes is often a matter of
reconstruction rather than rote retrieval. Section 5.7.1 provides pointers to this literature.
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ag002, etc. Indeed, the first version of AMBR (Kokinov 1994a) used such unin-
formative names. It was very instructive from a philosophical point of view as it
laid bare how little “knowledge” the program actually had. It was not very prac-
tical, however, because it hindered enormously the process of developing, tuning,
and documenting the model. Moreover, the use of English words as labels is not
completely devoid of philosophical justification. According to the causal-historical
theory of reference (e.g., Kripke, 1980; Devitt, 1999), the reference of natural-kind
words such as “water” is transmitted by a causal chain that goes back to one or more
events akin to a naming ceremony. Philosophers interested in this have emphasized
the “reference borrowing” links in the chain: in acquiring a word or concept from
others we borrow their capacity to refer, even if we are ignorant of the referent
(Kripke, 1980). For instance, I use the words “mule” and “hinny” competently, even
though I would be at a loss to discriminate the two animals in real life. I do not live
on a farm and so I borrow the reference of these particular words from the appropri-
ate domain experts. Analogous borrowing occurs for terms for medical diagnoses,
brain areas, and many, many other things. So, it can be argued that, in an extremely
passive and rudimentary manner, the AMBR model participates in the English speak-
ing community. It borrows from its human creators the reference of all symbols in
its lexicon, just as human speakers borrow the reference of some (or, perhaps, even
most) of the words they use to communicate with each other. A critic (e.g., Searle,
1980) might insist that the other words—the ones I do have firsthand experiential
grounding for—make all the difference. Still, in the process of developing, tuning,
and documenting the model, I need to “communicate” with it, again in an extremely
one-sided and rudimentary manner. It is far easier for me to “teach” AMBR a few
hundred English words than to learn their AMBR translations (ag001, ag002, . . . )
myself. Notice that the claim here is not that AMBR understands English but that, in
a one-sided and rudimentary manner, it participates in the English-speaking com-
munity. This community consists mostly, though not exclusively,2 of human beings
who shoulder the symbol-grounding burden.

As introduced in Chapter 3, AMBR uses concept-agents to represent classes of
entities in the micro-domain and instance-agents to represent individual instances.
The taxonomy of classes is represented by subc and superc links between
concept-agents. Each class may be linked to zero, one, or more super- or sub-
classes, different links possibly having different weights. Similar links—inst-of
and instance—relate instance-agents to concept-agents. Figure 4.1 illustrates.

Some instance-agents are temporary. They do not belong to the long-term mem-
ory of the system. They are constructed by some inference or (putative) perceptual
mechanism and “live” as long as they stay in the working memory (Section 3.1.5).
In the current version of AMBR, temporary instance-agents are used to represent the
target situation and for Skolem instances. In contrast, permanent instance- agents
are used for all LTM episodes. Concept-agents are always permanent.

“Top-down” links from concepts to instances deserve special attention. These
instance links play a key role for analog access in AMBR. As discussed in Petrov

2 The Google search engine, for example, has a strong claim for such participation.
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liquid-holder:
:type (:concept :object)
:subc (container 1.0)
:superc ((teapot 0.3)

(bottle 0.3)
(cup 0.2) )

:a-link (liquid 0.5)

teapot:
:type (:concept :object)
:subc ((liquid-holder 0.8)

(kitchen-equipment 0.2) )
:instance ((teapot-1 0.2)

(tpot-73 0.1) )

teapot-1:
:type (:instance :object)
:inst-of (teapot 1.0)

agent007:
:type (:temporary :instance :object)
:inst-of (teapot 1.0)

Fig. 4.1 Example of concept-agents, instance-agents, and some of the links between them. Each
micro-frame has additional slots (not shown in the figure). Note that each reference has a weight
used for spreading activation. Compare with Figure 3.6.

(1997, section 4.1.3), however, it is both psychologically implausible and compu-
tationally disadvantageous to maintain links to all instances of a given concept.
Instead, there are such links to only some of them. This “privileged set” varies as a
function of time (though much more slowly compared to other events in the model).
Thus, at any given moment each concept supports only a few of the vast number of
instances potentially available in the episodic memory.

The exact mechanisms for this are open for discussion and are not implemented
in the current AMBR version. The main idea is to give priority to recently used in-
stances, prototypes, or other salient agents without excluding anyone a priori. At
present, there is an implemented tool for generating (static) variants of the knowl-
edge base. The simulation experiments reported in this book are based on hundreds
of such variants of the same “core” knowledge base. The set of instance links
of each concept is generated by random sampling. The instance agents have un-
equal odds of being included in the sample, thereby approximating the mechanism
suggested above.

Some instance-agents are distinguished by the tag :prototype in their type
slots. These prototype instances are used as arguments in the so-called general
propositions (discussed below).
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4.4 Representation of Propositions

Individual AMBR agents are small and their micro-frames cannot represent much.
Therefore, even relatively simple units of the representation such as propositions
need be represented by a coalition of agents (Section 3.1.4). In the case of proposi-
tions, such coalitions are small and very tight.

color-of
:type (:concept :relation)
:subc physprop-rel
:slot1

:subc (physprop-rel . :slot1)
:c-coref object

:slot2
:subc (physprop-rel . :slot2)
:c-coref color

color-of-1
:type (:instance :relation)
:inst-of color-of
:slot1

:inst-of (color-of . :slot1)
:c-coref teapot-1

:slot2
:inst-of (color-of . :slot2)
:c-coref green-1

teapot-1
:type (:instance :object)
:inst-of teapot
:c-coref (color-of-1 . :slot1)

green-1
:type (:instance :object)
:inst-of green
:c-coref (color-of-1 . :slot2)

Fig. 4.2 A coalition of four micro-frames representing the proposition color-of-1
(teapot-1, green-1). All connectionist aspects are omitted.

There is an agent that represents the head of the proposition. In Figure 4.2, this
is the micro-agent color-of-1. It has the tags :instance and :relation
in its type slot and is an instance of the concept color-of. The arguments of
the relation are represented by S-slots in the heading micro-frame. Each S-slot has
several facets (see Section 3.1.3.1).

The arguments (or roles) of the relation are bound to the actual entities involved
in the particular instance of that relation by conceptual coreferences (or c-coref’s



4.4 Representation of Propositions 57

for short). In Figure 4.2, the first S-slot of the micro-frame color-of-1 has a facet
labeled c-coref and this facet is filled by a reference to the agent teapot-1. In a
nutshell, the existence of c-coref links between two micro-frames (or their slots)
means that the two frames represent two complementary aspects of the same entity.
In our example, these links represent the fact that teapot-1 and the first argument
of color-of-1 are one and the same thing. Similarly, the second argument of the
relation is bound to (a reification of) the particular shade of green that happens to be
the color of teapot-1.

Note that S-slot labels (slot1, slot2, etc.) in any proposition are absolutely
arbitrary and by no means serve to define the arguments within the relation. In the
example above, it is not crucial that slot1 is the object and slot2 the color. The
slots in the instance-agent color-of-1 could just as well be labeled slot5 and
slot6 (or even slot2 for the object and slot1 for the color). Moreover, two
instances of the same relation could use entirely different labels. Each S-slot has a
inst-of or subc facet that points to the corresponding slot in the parent concept.
This gives distinct advantages over a positional notation (in which interpretation of
arguments depends on their order in the proposition). An AMBR proposition effec-
tively has a set of arguments, not an ordered tuple.3 Thus it is possible that two
slots in a “child” inherit from the same slot in the “parent”, or that some parent slot
is left unused, etc. As we shall see, this provides for great flexibility in analogical

each-snowdrop-is-white
:type (:instance :relation)
:inst-of color-of
:slot1

:SUBC (color-of . :slot1)
:c-coref snowdrop

:slot2
:INST-OF (color-of . :slot2)
:c-coref prototypical-snowdrop-white

snowdrop
:type (:CONCEPT :object)
:subc flower
:c-coref (each-snowdrop-is-white . :slot1)

prototypical-snowdrop-white
:type (:PROTOTYPE :instance :object)
:inst-of white
:c-coref (each-snowdrop-is-white . :slot2)

Fig. 4.3 Example of a general proposition. Note the use of tags in the TYPE slots and SUBC vs.
INST-OF facets. Compare with the specific proposition shown in Figure 4.2.

3 Analogously, connectionist systems (e.g., Hummel & Holyoak, 1997; Plate, 2003; Smolensky,
1990) represent propositions as sets of role-filler bindings.
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mapping. It is possible to map propositions with different number of arguments and
to map two arguments from one proposition to a single argument in another.

The proposition illustrated in Figure 4.2 is a specific proposition—it relates two
specific instance agents. Such propositions typically encode episodic information.
In addition, AMBR’s knowledge base contains general propositions encoding se-
mantic information. Their arguments are concepts or prototype instances. For ex-
ample, the proposition in Figure 4.3 represents the general fact that each snowdrop
is white. The skolemization mechanism uses such general propositions to create spe-
cific Skolem propositions about specific exemplars of the general class (Section 5.7).

4.5 Representation of Situations

This section compares two alternative strategies for representing situations (prob-
lems, episodes) for the purposes of analogy-making. It considers their advantages
and disadvantages and presents the approach adopted in AMBR2.

4.5.1 Centralized Representation: Pros and Cons

We speak of centralized representation of a situation when there is an explicit data
structure enumerating all elements belonging to it. The data structure may be a list,
frame, or something else. The criterion is whether the system has a means to go
through all members of the situation and only those members, without searching.

Centralized representations simplify the mechanisms of the model. Each situ-
ation has distinct identity and can be handled as a unit. It can be put in explicit
competition with other situations, inspected for members with a given property, etc.

These computational advantages explain the widespread use of centralized rep-
resentations in analogy models. For instance, MAC/FAC (Forbus, Gentner, & Law,
1994) maintains two data structures for each episode (memory item in original
terms). Content vectors are used for cheap preliminary screening based on dot prod-
ucts. The SME analogical matcher (Falkenhainer, Forbus & Gentner, 1986) then
takes structured descriptions to produce a numerical score for each episode that has
passed the first (MAC) stage. ACME (Holyoak & Thagard, 1989) and ARCS rely on
predicate calculus descriptions to construct hypotheses for a constraint satisfaction
network. The Incremental Analogy Machine (Keane & Brayshaw, 1988) starts with
a predicate calculus description and looks for the group of predicates that have the
most higher-order connectivity between its elements. It then picks up a seed from
this seed group and goes to the description of the other situation searching for a seed
match, etc.

LISA (Hummel & Holyoak, 1997) is a very interesting case. It employs dis-
tributed representation of concepts, localist representation of propositions (P and SP
units in LISA terms), and centralized representation of situations (or analogs). Each
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situation can be in one of three modes: driver, recipient, or dormant. The propo-
sitions in the driver are selected to become active in the phase set one at a time
according to a fixed schedule specified by the human user. Recipient and dormant
propositions respond to the patterns generated by the driver. Only recipient units,
however, participate in analogical mapping. Thus in order to enter the mapping, an
analog from LTM must first switch from dormant to recipient mode. This transition
occurs in a stop-and-go fashion—all members of the situation are simultaneously
flipped from one mode into the other. In the 1998 implementation of the model this
was done by the human user (Hummel, personal communication, January 1998).

The first version of AMBR (Kokinov, 1994a) also used centralized representa-
tions of situations. There was a micro-frame standing for each situation as a whole.
This micro-frame was called head and brought together all agents that comprised
the representation of the situation. There was one S-slot for each element—object
or relation. The head was linked to all elements and some elements were linked
back to the head, thus creating a network like the one schematized in Figure 4.4. In
addition to the “vertical” links between the head and its elements, there were many
“horizontal” links between the elements themselves (not shown in the figure).

	
  Fig. 4.4 Schematic outline of centralized representation of a situation as used in the first version
of AMBR (Kokinov, 1994a). There is one head connected to all elements of the situation. Compare
with Figure 4.5.

This representational decision provided ready solutions to many issues faced by
the model. It was clear who was “responsible” for the situation. To begin working
on a problem, for example, it was sufficient to put the head on the goal list. To
decide which base analog “won,” it was sufficient to compare the activation levels
of the heads. The task of mapping one problem to another was reduced to a task
of establishing slot-to-slot correspondences between two micro-frames. After the
correspondences had been found, it was clear which elements of the source were
unmapped and thus were potential candidates for transfer, etc.

However, each of these advantages can be viewed as a disadvantage at the same
time. From a psychological point of view, it is controversial whether each episode
in the LTM has such distinct and clear-cut identity. To illustrate, it is comfortable
to suppose that Hamlet and West Side Story are salient and well-defined chunks for
many people. It is acceptable to suppose that the radiation problem (Dunker, 1945)
is a sufficiently self-contained chunk for some psychologists and a few of the par-
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ticipants in their experiments (Gick & Holyoak, 1983). The problems used to test
AMBR, however, deal with mundane episodes such as boiling a pot of water. Most
of the situations fall into this final category and it is far from clear whether they
are represented in such neat and orderly manner. The centralized representational
scheme seems incompatible with the numerous cases of omission, intrusion, blend-
ing, and interference in human memory recall (Kokinov, 2003, 2006; Kokinov &
Petrov, 2001).

Second, centralized representations tend to be too static and inflexible because it
is difficult to add or remove elements dynamically. They are also “flat” in the sense
that all members participate on an equal footing. Special measures (e.g., differenti-
ated link weights) are needed to make some elements more salient or pragmatically
more important than others. Even in these cases, however, an item is either always
in the situation or not at all. With bigger situations (cf. Section 4.2.1) this could lead
to a mild version of the frame problem (McCarthy & Hayes, 1969).

In addition to these considerations, which in our view apply to all cognitive mod-
els, there are other problems with centralized representations that are particular to
AMBR. The head micro-frame becomes unwieldy because it has too many slots.
Even the simple situations used in the simulation experiments so far require at least
a dozen S-slots in the head. For realistic situations this number would be on the order
of one hundred. When the number of slots is that big, however, McCarthy & Hayes’
(1969) frame problem appears again—it becomes necessary to specify which of the
many elements are relevant to the task at hand. Furthermore, head frames violate
the architectural requirement that DUAL agents should have only a few slots. Worst
of all, the fan-out effect makes the connectionist mechanism very inefficient. Even
when the head is very active it fails to activate its children because the weight of
each individual link is very small (due to normalization). When (and if) this finally
happens, there comes another problem—the coalition becomes so stable that it never
leaves the working memory because the reverberation is stronger than the decay.

In response to these problems, the newer versions of AMBR (starting with
AMBR2A, Petrov, 1997) have abandoned the centralized representation used by
their predecessor. The shift to decentralized representations poses problems in its
own right but also offers a number of substantial improvements.

4.5.2 Decentralized Representation: Pros and Cons

We speak of decentralized representation of a situation when there is no explicit data
structure enumerating all elements belonging to it. This term should not be confused
with the distributed representations prevalent in connectionist research. AMBR uses
localist representations of individual elements and decentralized representations of
situations.

The main idea of decentralized representations is to represent the situation as a
coalition of micro-frames without designating any of them as a center (Figure 4.5).
It is possible, though not required, that some (salient) coalitions have a head, but
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  Fig. 4.5 Schematic outline of decentralized representation of a situation. There are many intercon-
nected agents, none of which is in privileged position with respect to the others. Compare with
Figure 4.4.

even in these cases the head is primus inter pares. It is not special in any way and
do not have access to all elements of the situation.

With decentralized representations, the principal unit of analysis is the coalition
(or meso-frame, see Section 3.1.4). This is an emergent entity which allows for
great flexibility. It is easy to add new elements as they do not have to be “registered”
anywhere. Thus, it would be easier to design a perceptual mechanism that incremen-
tally builds such representations. As there are no fixed and predefined representation
rules, each particular situation can be described in a way that is most suitable for it.
Each micro-frame (including the head, if any) can have only a few slots and yet it is
possible to represent big situations.

Decentralized representations can be rich and detailed enough to support analog-
ical transfer and evaluation. Thus they meet the criterion presented in Section 4.2.1.
At the same time, they can map successfully to impoverished and incomplete tar-
gets. This can be achieved when the mechanisms for access and mapping cooperate
in the following way: The target problem acts as a driver and activates selected ele-
ments of several situations in the long-term memory. The full description of each of
these potential source analogs can be very rich. At first, however, only a small frac-
tion of the coalition members enter the working memory. These are the elements
that are semantically similar to the target, plus their closest coalition partners. Thus
the working memory contains descriptions of comparable complexity—the impov-
erished target and two or three partially activated sources. This commensurability
is favorable for the mapping mechanisms and they start building correspondences.
If a source analog matches the target well, its elements receive additional support
and become more active. In turn, this gives them resources to bring more coalition
partners into the working memory. The analog that has emerged as the winner can
unfold its rich representation. Now the working memory contains an impoverished
target and an elaborate source. The task for the mapping mechanisms thus becomes
more difficult but they are aided by the initial correspondences that have had time
to stabilize. When most (but not necessarily all) target elements have found their
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counterparts, the transfer and evaluation subprocesses can begin. They can rely on
the rich representation of the source to create plausible inferences in the target.

Of course, the advantages of decentralized representation come at a price: situ-
ations no longer have guaranteed and easily available identity. This is good from
psychological point of view, as it offers possibilities for modeling complex analo-
gies, blends, and so forth (Grinberg & Kokinov, 2003; Kokinov & Zareva-Toncheva,
2001; Turner & Fauconnier, 1995). From computational point of view, however, de-
centralization of representations increases the complexity of the mechanisms that
operate on them. Classical top-down algorithms must give way to a decentralized
and emergent mode of processing. The individual elements have to take the initiative
and do the job themselves instead of being passive data manipulated from outside.
This poses difficult issues about synchronization, coherence, conflict resolution, re-
source allocation, etc.

4.5.3 Ambr Situations in Detail

We close this chapter with a brief description of the concrete representational
scheme used in the 1998 version of AMBR.

As stated already, AMBR situations are represented as coalitions of agents. All
situation elements are instance-agents, permanent or temporary (see Section 3.2.2).
Most of them represent the objects and propositions in the situation. There are, how-
ever, a few agents that stand for different states within the situation. States loosely
bind several elements together and are useful for explicating the causal structure
of the situation. For instance, there usually are an initial state, goal state, and end
state. They are distinguished by tags in their modality slots—:init, :goal, or
:result. The initial state is often divided into overlapping substates.

States are instance-agents with S-slots that point to some of the members of
the state. Thus they resemble propositions with arguments (cf. Figure 4.2). Not all
agents that could be considered members of a particular state need be explicitly
mentioned, however. An element could be listed in zero, one, or more states, includ-
ing states of different types (e.g., :init and :goal). Each element may have one
or more state-related tags.

In turn, states are themselves arguments of relations such as cause, follows,
and prevents. If we turn back to the example from Section 4.1, the situation
presented there could have an initial state that lists the three objects involved:
teapot-1, water-1, and hot-plate-1. Another state-like agent combines
the propositions that the teapot is on the plate and the plate is hot. This state is a
left-hand argument of a causal relation stating that under these circumstances the
teapot is also hot, etc.

Each situation in AMBR2 has a situation-agent associated with it. This is the most
centralized aspect of the current representational scheme. Still, the situation agent
is not equivalent to the head from previous versions. It bears very little represen-
tational content—it only embodies the spatio-temporal contiguity of the elements
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of the scene or episode. Situation agents are ordinary instance-agents. Their sole
peculiarity is the tag :situation in their type slot.

Each individual member has a situation slot filled by a reference to the situ-
ation agent. We say that the instance is affiliated to the situation. The situation agent
itself, however, has at most associative links to a few members.4 It is not possible
to reach the members if given only the situation agent. It is possible, though, to
determine whether two instances belong to the same situation. To that end, each el-
ement should enter the working memory on its own and “claim membership.” This
arrangement resembles the relationship between instance-agents and concepts.

4 These a-links are used in DUAL for spreading activation only. They are ignored by the symbolic
aspect.





Chapter 5
AMBR Mechanisms at Work

5.1 Sample Problem

This chapter presents a detailed description of AMBR mechanisms on the basis of
a concrete example. We will use a target problem from the domain outlined in Sec-
tion 4.1. It is about cooling milk in a teapot:

Target problem CM11 (Cooling Milk, variant 1): There is a teapot and some
milk in it. The teapot is made of metal.

The goal is that the temperature of the milk is low.

This situation is represented in the current knowledge base by eleven instance-
agents. Seven of them are illustrated in Figure 5.1. The representation also contains
agents for the init and goal states, etc. Note that no cooling object (such as a refrig-
erator) is included in the original description of the problem.

low-T milk

teapot metal

T-of

in

made-ofSituation CM1

Fig. 5.1 Schematic representation of the target situation described in the text. Objects are depicted
as boxes and propositions as arrows. Not all elements of the actual representation are shown.

1 The episodes in the knowledge base are labeled by trigrams such as CM1 and FDO. These
trigrams appear in the transcripts listed in this chapter.

65
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In one of the many runs performed with the model, this problem happened to
match to a long-term memory episode related to heating food in an oven (Fig-
ure 5.2). This particular run will serve as an illustration of the various mechanisms
of the model.

Base situation FDO (Food on a Dish in an Oven): There is a baking dish and
some food on it. The shape of the dish is rectangular. There is also an oven. The dish
is in the oven. The temperature of the oven is high.

The goal is that the temperature of the food is high.
The outcome is that the temperature of the food is high. The fact that it is on the

dish and the dish is in the oven entails that the food itself is in the oven. In turn, this
causes the food to be hot, as the oven is hot.

high-T

food

dish rectangle

T-of on

shape-of

oven

in

T-of

in

Situation FDO

Fig. 5.2 Schematic representation of the base situation described in the text. The propositions
explicating the causal structure of the situation are not shown.

Note that this description is much more elaborate than that of the target. It con-
tains 21 agents (not all shown in the figure). As discussed in Section 4.2.1., it is
typical that the source analog is much richer than the target. In particular, there are
many agents representing the causal links. For example, it is represented that the
propositions on(food, dish) and in(dish, oven) taken together are the
cause for in(food, oven).
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5.2 Spreading Activation

5.2.1 Purpose

As stated earlier the spreading activation mechanism is of paramount importance in
AMBR (and DUAL in general). It is responsible for computing dynamic estimates
of the relevance of each particular memory item. It defines the working memory of
the system by bringing some agents above a threshold while keeping irrelevant ones
away. Recall the formula from Section 3.1.5:

WM = active portion of LTM + temporary agents

Given that all information processing occurs in the working memory, spreading
activation defines which agents take part in each particular computation. Moreover,
it serves as energy supply to the symbolic aspect and thus determines the speed of
each symbolic processor (Appendix C).

At a more global level, spreading activation is the basis of the access subpro-
cess in analogy-making. It is responsible for accessing concepts and instances (and
hence situations) that are relevant to the target. It also assures the relaxation of the
constraint satisfaction network, which in turn is a key factor for the mapping sub-
process. Various context and priming effects are also directly expressible in terms of
that mechanism (Kokinov, 1988 1994a, 1995).

5.2.2 Spreading Activation in AMBR

The connectionist aspect is a general architectural feature of DUAL (Section 3.1.3.2).
This section is devoted to the particular design used in AMBR.

AMBR uses a modified version of the Grossberg activation function (Grossberg,
1978; Holyoak & Thagard, 1989). The function is chosen to meet the following
design requirements:

• Time is continuous. (Or, the length of one elementary connectionist cycle is neg-
ligibly small with respect to the macroscopic time scale.)

• The activation level of any agent is bounded between zero and some fixed maxi-
mal value M.

• All links in the long-term memory are excitatory.2

• There is spontaneous decay that forces each node to loose activation according
to an exponential law in the absence of external support.

• There is a threshold θ that clips small activation levels to zero.

2 Therefore, it could also be said that AMBR uses a modified version of the function proposed by
McClelland & Rumelhart (1981). The two functions are equivalent for non-negative inputs. They
differ, however, for the hypothesis agents in the constraint satisfaction network.
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If we neglect the threshold for the moment, the activation level a of any single
node in the AMBR network is governed by the following differential equation:

ȧ = F(a,n) =−d a+E n(M−a)

a(t0) = a0

where a = a(t) is the activation level as a function of time and ȧ = da/dt is its first
derivative, n = n(t) is the net input to the node, M = const is the maximal activation
value, and d and E are parameters that control the rate of decay and excitation,
respectively. See (Petrov, 1997) for a mathematical analysis of this equation and for
the discrete approximation used in the implementation.

The function described above is the basis of the activation function of con-
cept and instance agents in AMBR. (Hypothesis agents have a more complicated
activation function described in Section 5.4.5.) There is one more complication,
however—the working memory threshold. Whenever the activation drops below
some predefined minimal level θ , it is instantaneously brought to zero (and the
agent is forced out of the working memory). Conversely, when the activation level
of some node is zero and the magnitude of the net input n is bigger than some criti-
cal value nθ , the activation level of the node jumps instantaneously to the threshold
level θ and then proceeds in the usual manner. The critical value nθ is defined as
the minimal support that an agent must receive from outside in order to resist the
spontaneous decay and maintain activation equal to the threshold.

5.2.3 Example

This section shows how these abstract formulas apply to the problem of cooling
milk in a teapot. The processing starts with the attachment of some agents to the
special activation sources in the model—the goal and input nodes (Section 3.1.5).
In this particular case, the human user of the system links the agents T-of-CM1
and low-T-CM1 to the goal node. A few of the other agents participating in the
description of the problem (e.g., teapot-CM1 and metal-CM1) are attached to
the input. These agents rapidly become very active and bring all their coalition part-
ners to the WM. Thus the target problem is presented to the system. (The external
context could also be represented on the input node (Kokinov, 1994a). This is not
done in the present example.)

Each instance agent from the target sends activation to its respective concept
agent in the LTM. These concept agents enter the working memory and in turn
activate related concepts and instances.3 Figure 5.3 illustrates this process. It is an
excerpt from the transcript of an actual AMBR run and tracks (roughly) the activation
flow originating at milk-CM1 and tpot-CM1.

3 The example discussed here starts with zero activation of all long-term memory agents. This,
however, need not be the case. Kokinov (1994a) has modeled priming effects by starting from
some residual activation pattern.
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T=0.04, adding milk to WM.
T=0.04, adding teapot to WM.
T=0.22, adding cook-vessel to WM.
T=0.22, adding liquid-holder to WM.
T=0.24, adding beverage to WM.
T=0.24, adding dairy-product to WM.
T=0.34, adding cheese to WM.
T=0.40, adding container to WM.
T=0.76, adding food-holder to WM.
T=0.98, adding plate to WM.
T=1.04, adding drinkable-liquid to WM.
T=1.06, adding liquid to WM.
T=1.08, adding food to WM.
T=1.42, adding cup to WM.
T=1.64, adding cow to WM.
T=1.84, adding baking-dish to WM.
T=2.20, adding saucepan to WM.
T=2.50, adding bottle to WM.
T=2.68, adding non-drinkable-liquid to WM.
T=4.70, adding glass to WM.
T=5.80, adding soft-drink to WM.
T=5.80, adding alcoholic-drink to WM.
T=6.15, adding pan to WM.
T=7.85, adding water to WM.
T=8.25, adding ice to WM.
...

Fig. 5.3 Excerpt of an AMBR transcript showing the process of bringing concept-agents to the
working memory. See text for details.

As evident from the transcript, activation propagates “upward” in the class hier-
archy, e.g. milk-CM1 → milk → dairy-product → food. It also spreads
“horizontally” to concepts at the same level of abstraction, e.g., milk→ cheese
(directly or via dairy-product). Some concepts that are associatively related to
the active ones are also brought to the WM, e.g., cow. Sooner or later, however, the
spread of activation is limited by the decay factor and new concept agents cannot
pass the threshold. The number of active concept agents stabilizes, though individ-
ual agents occasionally get in or out the WM.

Recall from Section 4.3 that there are top-down instance links from the con-
cept agents to some of their instances in the LTM. These links transmit activation
from the semantic to the episodic memory and thereby initiate the access of source
analogs. Figure 5.4 shows the instances that happened to be activated by the con-
cepts of the previous transcript.

Note that initially there are isolated instances from disparate situations. The rea-
son for their early inclusion in the working memory is their semantic similarity to
the elements of the driver. As these instances participate in coalitions, however, they
bring their partners to the WM too. Thus, retrieval of episodes is a bottom-up pro-
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T=0.34, adding milk-MTF to WM.
T=0.42, adding tpot-WTP to WM.
T=1.28, adding food-SFF to WM.
T=1.40, adding cup-IHC to WM.
T=1.80, adding dish-FDO to WM.
T=2.34, adding tpot-ERW to WM.
T=2.86, adding food-FDO to WM.
T=7.80, adding water-WTP to WM.
...

Fig. 5.4 Excerpt of an AMBR transcript showing the process of bringing instance-agents to the
working memory. Compare with Figure 5.3.

cess in AMBR. Note that there is no need for any centralized data structure. This is
in contrast to other models (e.g., Thagard et al., 1990; Forbus et al., 1994a) which
treat analog retrieval as an explicit competition at the level of entire situations.

The spreading activation mechanism is influenced by the other mechanisms in the
model. These influences are mediated by changes in the topology of the network.
Many new agents and new links are added by various mechanisms. This greatly
affects the flow of activation and contributes to the dynamic and emergent nature of
AMBR computation. To illustrate, consider the activation history of one particular
instance agent—food-FDO—shown in Figure 5.5.

Fig. 5.5 Activation his-
tory of the instance agent
food-FDO.
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As we shall see later, food-FDO maps to the target instance of milk in our
example. Thus the plot shows the gradual increase of the activation of a “successful”
agent. Note in particular the sharp bend at time 160. It is due to an influence by the
rating mechanism (Section 5.6). At that moment, the rating mechanism makes a
commitment that milk-CM1 corresponds to food-FDO and creates a temporary
link between the two. In this way the highly active target element (attached to the
input node) gives additional strong support to its counterpart.
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5.2.4 A Prediction of the Model

In the example from the previous section all target elements were attached to the
input and goal nodes simultaneously. This, however, does not have to be the case.
On the contrary, it is more reasonable to expect that the elements are attached se-
quentially, in the order they become available to the system.

For example, suppose a student reads the verbal description of some problem in
a textbook. The text is read sequentially and the internalized representation of this
text would tend to be constructed sequentially too. In the AMBR model, this process
could be crudely approximated by attaching the temporary agents that represent the
target sequentially to the input node. In a more elaborate model, these elements
would be constructed by the perceptual mechanisms. Similar considerations hold
for the order of attachment to the goal node.

When some target elements are attached earlier than others, they will activate
their respective concept agents earlier. This entails that the pattern of activation in
the whole network shifts towards the association field of the early target elements.
They have advantage over the elements that are attached to the source nodes later.
Moreover, earlier elements tend to establish hypotheses earlier, which in turn rein-
forces their advantage. The net result of this process is that the order of presentation
will affect the processes of analog access and mapping. This is one prediction of
AMBR that could be tested experimentally.

The order effect predicted here is similar to the one demonstrated by Keane,
Ledgeway, and Duff (1994). There is a difference, however. The attribute-matching
task used in their experiment did not involve access of a source analog from memory.
The subjects were given two lists of propositions and asked to find a correspondence
between them. The experimental results suggested that the order of propositions in
the list affected the time needed to find the correct mapping. We predict that similar
order effects could be demonstrated with respect to the process of analog access
as well. Specifically, the order will affect the frequency of accessing episodes from
memory. Episodes containing elements that are semantically similar to a given tar-
get element will be retrieved more frequently when this target element is presented
earlier to the participants. Section 6.4 presents a simulation experiment with AMBR
that demonstrates such effect.

5.3 Marker Passing

As introduced in Section 3.2.3.2, the marker passing (MP) mechanism is a tool for
answering the question, “Given two nodes in the network, is there a path between
them?” It is the symbolic counterpart of the spreading activation. Markers are emit-
ted by certain nodes of origin and then propagate the network looking for a marker
intersection. Figure 5.6 illustrates the variant of this general mechanism that is used
in AMBR.
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Each instance-agent in AMBR emits a marker when entering the WM. It sends
it to its parent concept via the inst-of link. The concept agent stores the
marker in its local buffer and also passes it further to its superordinate con-
cept(s) via the subc link(s). Thus markers propagate “upward” in the class hi-
erarchy. Therefore, the presence of a marker in some concept indicates that the
instance of origin belongs (directly or by inheritance) to that concept. For exam-
ple, drinkable-liquid in Figure 5.6 can collect markers from three instance-
agents: milk-CM1, milk-MTF, and water-WTP. This information can then be
used for inheritance of properties, for skolemization purposes, etc.

food-FDO milk-CM1 milk-MTF water-WTP

milk water

 dairy 
product

beverage

food drinkable
   liquid

liquid

Fig. 5.6 Illustration of the marker passing mechanism. Each box represents an agent. Markers
originate from the instance-agents in the bottom row and propagate upwards through the network
of concept-agents. Instance-agents belonging to the target coalition (CM1 in this example) emit
markers of one color (depicted by light stars in the figure), whereas instance-agents retrieved from
long-term memory emit markers of a different color (depicted by dark diamonds). An intersection
of two markers of complementary colors indicates that the agents that emitted them are instances
of the same concept.

The culmination of the marker passing mechanism, however, happens when two
complementary4 markers meet at some concept agent. This intersection indicates
that the two instances are semantically similar as they belong to the same (su-
per)class. The activation level of the intersection node can be used as a numerical
estimate of the degree of similarity in the current context (Kokinov, 1992b, 1994c).

Marker intersections serve another important role in AMBR. They trigger the
construction of semantically grounded hypotheses and thus initiate the constraint

4 Complementary markers have different origins and complementary colors.
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satisfaction mechanism. More concretely, when a concept agent detects an intersec-
tion it formulates a node construction request describing the new hypothesis-agent
that is to be made. It then sends the request to one of the specialized node con-
structors which are the only agents in the architecture capable of making a new
agent. The node constructor carries out the request and constructs a temporary
agent of the prescribed kind. In the particular case, it will be an embryo hypoth-
esis (cf. Section 5.4) involving the two marker origins. The concept agent that has
detected the intersection becomes the justification of the new hypothesis. In the ex-
ample above, three such hypotheses are created: milk-CM1<->milk-MTF jus-
tified by milk, milk-CM1<->water-WTP justified by drinkable-liquid,
and milk-CM1<->food-FDO justified by food.

One of the biggest issues in marker-passing systems is the attenuation of the
marking. Without such attenuation there would be too many marker intersections,
most of which are useless and drown out the few useful ones. Different systems use
different attenuation strategies (see Hendler, 1988, for an overview). Thus Quillian
(1966) limits the number of links that a marker can traverse. Charniak (1983) checks
the outbranching factor and prevents “promiscuous” nodes from sending markers.
Hendler (1988, 1989) uses an energy-like quantity called zorch, etc. In AMBR there
is no need for a specialized mechanism for attenuation of markers because it fol-
lows naturally from the architectural principles of DUAL and the design of AMBR.
Specifically, the spread of markers in the model is restricted by the following factors:

• Markers originate only from instance-agents. The concepts do not create new
markers; they only pass the existing ones.

• Makers propagate only along links with certain labels (inst-of, subc, and
c-coref).

• When there is a marker intersection, the markers stop and do not propagate
further. In Figure 5.6, for example, the (diamond-shaped) marker emitted by
milk-MTF does not propagate past the concept milk because it intersects there
with the (star-shaped) marker from milk-CM1.

• Only active agents can receive and send markers. Thus the spread of markers is
limited by the boundaries of the working memory as determined by the spreading
activation mechanism.

• Marker passing, as any other symbolic activity in the architecture, takes time
and thus depends on the speed of the symbolic processor of the agent receiving
and handling the marker. As a consequence, markers move very slowly in the
“peripheral” regions of the working memory where activation levels are low.

• Reporting marker intersection depends on a limited resource. There are only a
few node constructors in the architecture and each concept agent must recruit one
in order to create new hypotheses. When all constructors are busy the agent must
wait until some of them becomes available. Thus there is an implicit competition,
in which the more active agents have the advantage.

The net result of all these factors is that marker intersections are reported in a tempo-
ral order reflecting their potential usefulness for the particular task in the particular
context. It is important to stress that this global marker passing is a dynamic emer-
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gent process. A whole coalition of DUAL agents is needed to cooperatively produce
the final result. Each individual agent can do local MP only—instances know to
create markers and concepts know to store and compare them. The overall result,
however, is determined by a multitude of factors each of which has relatively minor
impact on its own. Moreover, the relative strength of these factors vary dynamically
in response to various external or internal events. Therefore, it is hard to predict a
priori what marker intersections will happen in any given case, when they will con-
struct hypotheses, etc. Yet the process exhibits certain emergent regularities: more
active (i.e., more relevant) areas of the network report more and faster marker inter-
sections.

5.4 Constraint Satisfaction

5.4.1 Main Points

The multiconstraint theory (Holyoak & Thagard ,1989, 1995) treats analogy-making
in the light of three constraints: structural, semantic, and pragmatic. AMBR adopts
this general idea. Like ACME, it uses a parallel connectionist algorithm for solving
the constraint-satisfaction problem. This does not mean, however, that AMBR is a
simple replication of ACME. There are a number of differences:

1. The constraint satisfaction network (CSN) is constructed incrementally by an
emergent process. Hypotheses are created locally and are incorporated dynami-
cally and asynchronously.

2. The CSN is integrated with the main network. This eliminates the need for special
nodes mediating the semantic and pragmatic influences. Instead, this is accom-
plished by the relevant instance and concept agents themselves. Moreover, the
hypotheses in the CSN send activation back to the agents in the main network.
This is crucial for the integration of analogical access and mapping.

3. Instead of covering all possible element pairs, AMBR builds only justified hy-
potheses. In addition to being much more economical, this eliminates the need
for centralized representation of situations.

4. A situation may be only partially accessed and thus participate only with its ac-
tive elements.

5. Several source situations compete in the CSN simultaneously and thereby allow
the emergence of complex analogies and blends when appropriate.

6. It is possible to map relations with different number of arguments, as well as map
two arguments from one side to a single one from the other.

7. The system does not wait for the CSN to settle in order to read out the “solu-
tion” from the activation pattern. Instead, the CSN is in constant relaxation as
the topology of the network changes. There is a rating mechanism that promotes
winners and eliminates losers dynamically.
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8. Each hypothesis agent undergoes an elaborate life cycle. The CSN involves hy-
potheses of different kinds.

9. There are hypotheses involving general propositions from the semantic memory
(Section 4.4).

The first two points are by far the most important. Previous constraint satisfaction
models, and in particular ACME (Holyoak & Thagard, 1989) and ARCS (Thagard
et al., 1990), work in successive stages. First, a source analog is retrieved from
long-term memory or supplied manually by the experimenter. Second, the constraint
satisfaction network is constructed by a sequential symbolic process. Finally, the
CSN is waited to settle, thus identifying a coherent set of correspondences. This
three-step process is illustrated in Figure 5.7. The stages are carried out by different
and independent mechanisms.

Analog 
retrieval

CSN
construction

CSN
relaxation

Fig. 5.7 Constraint satisfaction as a three-stage process. The stages come one after the other and
cannot interact. Compare with Figure 3.2.

In contrast, AMBR (Kokinov, 1994a) views constraint satisfaction as a single in-
tegrated process that has three interacting subprocesses. They all run together, each
one influencing the rest (Figure 5.8). This is very much in agreement with the overall
spirit of the model—compare with Figure 3.4. The whole computation is performed
in an integrated fashion: The same representational structures and computational
mechanisms are used for all three subprocesses.

Analog access

CSN construction

CSN relaxation

Fig. 5.8 Constraint satisfaction as a set of interacting subprocesses. Compare with Figure 3.4.

This computational scheme has several important advantages:

• It allows for integration of the more global processes of access and mapping in
analogy-making.

• The subprocess that builds the CSN can be guided by the associative mechanism
to avoid blind construction of implausible hypotheses. In this way, AMBR builds
only a small fraction of the hypotheses generated by ACME. This decreases the
working-memory demands—a weakness of ACME that has been criticized by
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many researchers including its authors themselves (Keane et al., 1994; Kokinov,
1994a; French, 1995; Hummel & Holyoak, 1997).

• At the same time, AMBR retains the flexibility implied by the all-encompassing
network used in ACME. AMBR does not construct all hypotheses, it constructs
only relevant ones. And because relevance is determined dynamically, no possi-
bilities are ignored a priori. This benefit is a direct consequence of the dynamic
emergent computation that underlies AMBR’s constraint satisfaction.

5.4.2 Hypothesis Agents

This section is devoted to the main actors in the constraint satisfaction network.
From a declarative point of view, hypothesis-agents carry four main pieces of infor-
mation, each stored in a specific slot. The first two slots contain the two entities be-
ing mapped. They are called hypothesis elements. The hypothesis agent as a whole
represents the hypothesis that the first element (from the driver situation) corre-
sponds to the second element (from a recipient situation). There are also hypotheses
involving concept agents.

The third slot of a hypothesis-agent contains its justification(s). The justifica-
tion of a hypothesis is the reason for which it has been created and is being main-
tained by the system. For example, one possible justification of the hypothesis that
milk-CM1 corresponds to water-WTP is that both are drinkable liquids.

There are two kinds of justifications: semantic and structural. A hypothesis has
semantic justification when its two elements are semantically similar. Such justifi-
cations are established by the marker-passing mechanism. In most cases the two ele-
ments belong to close or even identical classes. On some occasions, however, AMBR
can construct hypotheses between almost any two entities. This happens when the
domains of the two situations being mapped are very remote and hence the markers
can intersect only at some very abstract node such as object, relation, etc. In
this way, for example, tumor could be mapped to fortress. Such occasions are
rare because usually the markers intersect earlier.

The second kind of justifications are the structural ones. A given hypothesis is
structurally justified when there is another hypothesis that interlocks with the first.
For example, the hypothesis that two relations correspond justifies the hypotheses
that the arguments of these relations also correspond. Structural justifications are
established by the structure correspondence mechanism (Section 5.5).

Semantic justifications are always represented by concept-agents; structural jus-
tifications by hypothesis-agents. It is possible (and frequent) that a hypothesis has
several justifications. For instance, the hypothesis milk-CM1<->water-WTP
could be justified by drinkable-liquid (semantic) and by temperature-
of-CM1<->temperature-of-WTP (structural). In AMBR this particular hy-
pothesis will be represented as schematized in Figure 5.9.

The fourth piece of information maintained by each hypothesis agent is a refer-
ence to the situation agent of the driver situation. In AMBR it is theoretically possi-
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milk-CM1<-->water-WTP:
:type (:mature :hypothesis :temporary)
:t-link ((milk-CM1<-->food-FDO -0.3)

(milk<==>water +0.3)
(sit-CM1<==>sit-WTP +0.3) )

:slot1
:c-coref milk-CM1

:slot2
:c-coref water-WTP

:slot3
:c-coref (drinkable-liquid

temperature-of-CM1<-->T-of-WTP )
:slot4

:c-coref sit-CM1

Fig. 5.9 Example of a hypothesis-agent. It represents the hypothesis that milk-CM1 corre-
sponds to water-WTP. There are two justifications for this correspondence. Its driver situation is
sit-CM1. Not all link weights are shown.

ble that two or more target problems are attached simultaneously to the goal node.
Each of them initiates its own set of hypotheses. The fourth slot prevents mixing
hypotheses from different sets. It is also useful for the other model mechanisms.

Figure 5.9 shows only the symbolic aspect of the hypothesis. In addition, there is
a connectionist aspect (as always in DUAL). All references to other agents are also
links via which the hypothesis participates in the process of spreading activation.
It supports its elements and in turn is supported by them. There are also excitatory
links to the justification(s) and the driver situation.

Finally, there are temporary links (t-links) that connect the hypothesis with other
hypotheses. These links may be excitatory (for coherent hypotheses) or inhibitory
(for conflicting hypotheses). They are invisible to the symbolic aspect of the ar-
chitecture but are very important for the relaxation of the constraint satisfaction
network.

Temporary links with negative weights deserve special comment. They embody
the one-to-one constraint in analogical mapping. This constraint pushes the CSN
towards a solution in which an element X from situation 1 is mapped to at most one
element from situation 2. There is a strong pressure that the same element X should
not be mapped to two or more elements, e.g., Y and Z. Thus, the hypotheses X<->Y
and X<->Z are contradictory and should be connected with inhibitory links.

A problem arises at this point. The constraint-satisfaction network in AMBR is
constructed piecemeal by an emergent process. There is no central executive that
goes through all hypotheses, identifies conflicting ones and puts inhibitory links
between them. Rather, hypotheses are constructed one by one and the creator of
each hypothesis has local information only. Under such circumstances, how does
the agent X<->Y “know” that there is a rival (e.g., X<->Z) to compete with?

The answer to this question is: The hypothesis will “ask” the secretary of X.



78 5 AMBR Mechanisms at Work

5.4.3 Secretaries

Each entity-agent has a secretary associated with it. The secretary is not a separate
agent; it is part of the entity-agent itself. The term secretary is used conventionally
to refer to that particular part of a concept or instance agent that keeps track of the
correspondences involving the agent.

The job of a secretary is twofold: it handles hypothesis-registration requests and
carries out the rating mechanism. To that end, each secretary (i.e., instance or con-
cept agent) is equipped with a slot and a few symbolic routines. The slot is labeled
hypoth and is filled with references to all hypothesis-agents having the entity-
agent as element. The same references are used as links that transmit activation from
the agent (e.g., milk-CM1) to its hypotheses (e.g., milk-CM1<->water-WTP
and milk-CM1<->food-FDO).

One of the first things that a hypothesis agent does after its creation is to send
hypothesis-registration requests to the respective secretaries. Hypothesis-registration
requests (or HR-requests for short) are symbolic structures notifying the secretary
about the new hypothesis. Each of the two secretaries receives a request and sends
a secretary answer back to the hypothesis. There are several kinds of answers but
basically all of them could be aggregated into the following two major types:

• Resign — This answer means that the new hypothesis agent represents a tenta-
tive correspondence that already is represented by another hypothesis-agent. In
other words, the new hypothesis is a duplicate of an older one. Such duplicate
hypotheses are created because there usually are several justifications for a given
correspondence. For example, the marker-passing mechanism could construct the
hypothesis milk-CM1<->water-WTP on the grounds that both are drinkable
liquids. Later on, the structure correspondence mechanism could independently
construct the same hypothesis on the grounds that milk-CM1 and water-WTP
are corresponding arguments in corresponding relations. This second hypothe-
sis is conceptually identical with the first but will be represented by a different
agent. Let us suppose (as is actually implemented in the program) that the name
of the second hypothesis agent is milk-CM1<-1->water-WTP. When it tries
to register at the secretary of milk-CM1, the latter will reply with an answer of
type Resign.

• Establish — This answer means that the hypothesis agent represents a novel
hypothesis that does not coincide with any existing one. In the example above,
the first hypothesis (milk-CM1<->water-WTP) would receive such answer
to its HR-request.

Secretary answers carry more information than the simple resign/establish distinc-
tion. Answers of type Resign carry a reference to the favorite—the hypothesis in
favor of whom to resign. Answers of type Establish carry a (possibly empty) list of
references to rival hypotheses.
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5.4.4 Life Cycle of Hypothesis-Agents

Hypothesis-agents analyze the answers from the secretaries and act according to
their directives. Due to the possibility of answers of type Resign, a new hypothesis
is not guaranteed from the beginning that it has raison d’être. It may be a dupli-
cate of an existing hypothesis. If it manages to establish itself, there comes another
struggle—it tries to win the competition with rival hypotheses.

AMBR distinguishes three main types of hypothesis-agents: embryos, mature,
and winner hypotheses. They are marked by a tag in the type slot. More impor-
tantly, they differ in their activation functions and the repertoire available to their
symbolic processors.

Each hypothesis-agent starts its life cycle as an embryo. Later on, it either resigns
in favor of some other hypothesis or establishes itself and becomes mature. Mature
hypotheses have a chance to be promoted to winner status (or demoted to loser
status). In more detail, the life cycle is the following:

The main rule for hypothesis construction in AMBR is that each hypothesis must
have a justification. As stated earlier, there are two ways to construct a hypothesis-
agent: by the marker passing or by the structure correspondence mechanism. Either
way, the new embryo hypothesis is created by a node constructor and begins its
life cycle. It sends hypothesis registration requests to the secretaries of its two el-
ements and waits for the answers. Usually, the two answers are the same—either
both are Establish or both are Resign. The embryo takes corresponding actions re-
spectively. Sometimes the secretaries disagree in their answers. This is possible due
to the asynchronous and parallel nature of DUAL interactions. Embryo hypotheses
are equipped with procedural knowledge to resolve the ambiguities.

When it turns out that the new embryo hypothesis is a duplicate of an existing
hypothesis (called a favorite), the former resigns in favor of the latter. The resigning
hypothesis hands over to the favorite all its declarative knowledge and in particular
its justification. Having done that, it fizzles out. In the end, there is one hypothesis
agent with two justifications instead of two separate hypotheses with one justifica-
tion each. This is the mechanism that allows for multiple justifications of AMBR
hypotheses despite that each agent is born with just one.

If the analysis of secretary information reveals that the embryo hypothesis rep-
resents a novel correspondence between two elements, the embryo establishes itself
and becomes a mature hypothesis. From now on, its main goals are to win the com-
petition with alternative hypotheses and to produce children.

The first goal is pursued by creating inhibitory links with the rivals. (The hypoth-
esis receives a list of its rivals as an “enclosure” to the secretary answers.) For fair
play, the new agent sends its reference to all competing hypothesis, prompting them
to establish symmetric inhibitory links.

The third phase of the life cycle of hypothesis agents begins when (and if) the
hypothesis receives a promotion incentive from an authorized secretary. This topic
is discussed in Section 5.6.
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5.4.5 The Constraint-Satisfaction Network

The mechanisms described so far gradually build many hypothesis-agents and es-
tablish connections between them. In this way, a constraint satisfaction network
emerges. The CSN is a formation of agents that cooperatively solve a constraint
satisfaction problem. It is integrated with the main network. The hypothesis agents
participate in the big population of agents that comprise the model as a whole. The
CSN involves the following kinds of links:

1. LTM→ CSN: Links from instance and concept agents to the respective hypoth-
esis agents. These links are excitatory and are stored in hypoth slots of these
entity agents.

2. LTM → CSN: Links from concept agents (e.g., drinkable-liquid) to the
hypotheses justified by them (if any). These links are excitatory and are stored in
t-link slots of these concept agents.

3. CSN→ LTM: Links from hypotheses to their elements, semantic justifications,
and driver situations. These links are excitatory and are stored in S-slots of hy-
pothesis agents.

4. CSN→ CSN: Links from a hypothesis to its structure correspondence children
(if any). These links are excitatory and are stored in t-link slots.

5. CSN → CSN: Links from a hypothesis to its structural justifications (if any).
These links are excitatory and are stored in S-slots.

6. CSN→ CSN: Links between competing hypotheses. These links are symmetric,
have negative weights, and are stored in t-link slots of hypothesis agents.

The constraint satisfaction network thus embodies the three constraints posited by
the multiconstraint theory (Holyoak & Thagard, 1989). The structural constraint
is manifested in categories 4, 5, and 6 above. The semantic constraint appears in
category 2, and the pragmatic one—in categories 1 and 2. Note that besides the links
discussed here, AMBR has additional mechanisms for enforcing the constraints.

The links from the CSN to the rest of the network (category 3) deserve special
attention. Through these links, the constraint satisfaction mechanism influences the
pattern of activation in the main network and hence everything in the architecture.
This fact has important implications for the integration of analogical access and
mapping.

Hypothesis activation function. Hypothesis-agents are special in that they re-
ceive not only excitatory but also inhibitory input from their neighbors. They have
two separate input zones—enet and inet. The two connectionist inputs are combined
with the current activation level of the agent to determine the change of activation.
The change of activation is governed by a modification of Grossberg’s activation
rule. (Compare with the equation from Section 5.2.2.)

In the original version of Grossberg’s (1978) function, the activation can take
both positive and negative values. This is inconsistent with the DUAL design prin-
ciple that all agents in the architecture must have non-negative activation functions.
Therefore, AMBR hypotheses use a linear transformation of Grossberg’s activation
function. The neutral point of the function (i.e., the resting level for zero input)
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is placed above the working memory threshold. The most negative branch of the
function is truncated by the threshold. In this way the most pronounced losers are
eliminated automatically—they simply fall out the WM and die. (Recall that all hy-
potheses are temporary agents). The upper part of the negative branch, however, is
situated above the threshold. Thus the hypotheses that are judged implausible but
not absolutely outlandish have a chance to survive.

Hypothesis output function. Hypothesis-agents are also characterized by a spe-
cific output function. Moreover, it is different for embryo hypotheses and mature
hypotheses. Embryo hypotheses do not influence their neighbors at all. (In other
words, their output function is the constant zero.) The reason for this decision is
that the embryos are do not really participate in the CSN yet. Their output function
changes when (and if) they mature. Mature hypotheses have a threshold output func-
tion so that only hypotheses whose activation is above the neutral level can influence
their neighbors.

5.4.6 Example

As an example of the mechanisms discussed so far, and in preparation for the struc-
ture correspondence mechanism that comes next, this section provides a transcript
showing the construction of one particular embryo hypothesis: milk-CM1<->
milk-MTF. Figure 5.10 illustrates the construction of a hypothesis by the marker-
passing mechanism, followed by secretary inquiries. The concept milk detects a
marker intersection at time 1.72 and sends a node construction request to the special
agent *NC6*. It constructs an embryo hypothesis at time 2.84. After registering at
its two secretaries the hypothesis matures at time 4.98.

T=0.16, #<MRK MILK-CM1> received in MILK.
T=1.64, #<MRK MILK-MTF> received in MILK.
T=1.72, #<MRK MILK-CM1> and #<MRK MILK-MTF> intersected at MILK.
T=2.12, #<NCR MILK> received in *NC6*.
T=2.84, creating a new agent: MILK-CM1<-->MILK-MTF
T=3.72, #<HR MILK-CM1<-->MILK-MTF> received in MILK-CM1
T=3.82, #<SA+ nil> received in MILK-CM1<-->MILK-MTF.
T=3.84, #<HR MILK-CM1<-->MILK-MTF> received in MILK-MTF
T=4.96, #<SA+ nil> received in MILK-CM1<-->MILK-MTF.
T=4.98, establishing hypothesis MILK-CM1<-->MILK-MTF.

Fig. 5.10 Excerpt of an AMBR transcript showing the construction and establishment of a hypoth-
esis agent. #<MRK xxx> is a marker that originated at the instance agent with the given name,
#<NCR xxx> is a node construction request, #<HR xxx> is a hypothesis registration request,
and #<SA+ nil> is a secretary answer of type Establish.
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5.5 Structure Correspondence

The structure-correspondence (SC) mechanism generates new hypotheses on the
basis of existing hypotheses. It is carried out by mature hypothesis agents. Their
symbolic processors are equipped with routines specialized for the task.

There are two major types of SC, conventionally termed bottom-up SC and top-
down SC. Both come in strong and weak variants.

5.5.1 Bottom-up Structure Correspondence

Bottom-up SC takes place when there is a hypothesis involving two instance agents.
More precisely, it occurs when there is a mature hypothesis whose elements have
the tag :instance in their type slots. Under these circumstances, the symbolic
processor of the hypothesis tracks the inst-of links of the two instances and re-
trieves their respective concepts. For example, if the two instances are milk-CM1
and water-WTP, the concept agents will be milk and water. Then, the origi-
nal hypothesis initiates the process that will construct a supplementary hypothesis
stating a parallel correspondence between the two concepts. The new embryo is con-
structed in the usual way—by formulating and sending a node construction request.
The original hypothesis becomes the justification of the new one.

It frequently happens that the new hypothesis is not really new—the same con-
cepts have been already put into correspondence by an earlier invocation of the
structure-correspondence mechanism. For example, the hypothesis milk-CM1<->
water-WTP generates the concept-level hypothesis milk<->water. After a
while, another hypothesis, e.g., milk-CM1<->water-FDO constructs another in-
stantiation of the same concept-level hypothesis. In such cases, the duplication is
detected by the secretaries and the second hypothesis resigns in favor of the first.
Eventually, milk<->water will have two justifications and there will be appro-
priate excitatory links. This process enhances the overall degree of connectivity in
the CSN.

The mechanism of bottom-up SC creates a pressure that correspondences at the
instance level should be coherent with correspondences at the concept level. Stated
differently, the mapping of two instances facilitates mapping of the classes to which
they belong and vice versa.

The bottom-up SC also creates hypotheses involving the situation-agents to
which the instances are affiliated. Recall that AMBR maps the target situation to
several different bases simultaneously. The bottom-up SC creates hypotheses of
the form sit-CM1<->sit-WTP and sit-CM1<->sit-FDO. The existence of
such hypotheses in the CSN creates a pressure that situations are mapped as units.
Blends are possible but they happen only when truly warranted (Grinberg & Koki-
nov, 2003). Normally the model tries to confine the mapping within the scope of
two situations only: the target and a single base.
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5.5.2 Top-down Structure Correspondence

Top-down SC is present in one form or another in all models of analogy-making.
It captures an important aspect of the structural constraint as posited by Gentner
(1983) and Holyoak & Thagard (1989): When two propositions correspond, it is
highly desirable that their respective arguments also correspond.

The difficulties begin with the disambiguation of the phrase “respective argu-
ments” above. Some models (e.g., Falkenhainer et al., 1986) walk around this
difficulty by assuming that the enumeration of the arguments in a proposition
can be meaningfully transferred to another proposition. From our point of view,
this approach seems too conservative and psychologically implausible. In contrast,
Holyoak & Thagard (1989) follow an approach that seems too liberal—they con-
sider all possible argument pairs.

Thanks to the elaborated knowledge representation scheme adopted in DUAL
(Kokinov, 1988, 1992), AMBR does not have great difficulties with this problem.
Each argument is represented by a separate S-slot with many facets. One of these
facets points to the respective slot in the parent concept as discussed in Section 4.4.
This greatly facilitates the structure correspondence mechanism and relieves the
model of implausible assumptions. Moreover, it supports mapping propositions with
different number of arguments (Kokinov, 1994a; Hummel & Holyoak, 1997).

The details of the top-down structure correspondence in AMBR are the following:
The symbolic processor of each mature hypothesis checks whether the two elements
are propositions. The criterion is whether they contain the tags :instance and
:relation among the fillers of their type slots. If this is the case, the symbolic
processor attempts to determine the slot-to-slot correspondences. To do this, it needs
the so called pivot concept.

The pivot concept is a concept which is a common superclass of both rela-
tions. For example, if the propositions are instances of the relations in and on, the
pivot concept could be in-touch-with, asymmetric-binary-relation,
or something else depending on the particular problem and context.

The pivot concept is often identified by the marker passing mechanism. When
such information is available, the symbolic processor of the “proposition” hypoth-
esis generates the appropriate “argument” hypotheses. When the information is
not available, the symbolic processor checks for the obvious (and frequent) case
when both propositions are instances of the same relation. In other words, it checks
whether the inst-of slot of the two instances point to the same concept agent and
uses the latter as a pivot concept. Otherwise, it gives up and stops, hoping the MP
mechanism will provide the missing information later.
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5.5.3 Weak Structure Correspondence

In many cases it is bad to allow the SC mechanism create new hypothesis but it is
desirable to make it create additional justification links between existing hypotheses.
This is the purpose of the weak SC.

For example, suppose that two situations—CM1 and WTP—are being mapped.
As discussed in Section 4.5.3 these situations may involve states. Suppose that
initst-CM1 and initst-WTP are two such states. The marker passing mech-
anism detects they are instances of the same concept (namely init-state) and
creates the hypothesis initst-CM1<->initst-WTP. Finally, suppose it estab-
lishes and becomes mature. Now the question is, “Should this hypothesis perform
top-down structure correspondence?”

Each state has several S-slots pointing to the elements of the respective situation
and the initial relations between them. Thus, the two states resemble propositions
of type and and, therefore, one wishes to generate SC-motivated hypotheses about
the arguments of these and-like propositions. Applying the usual (i.e. strong) struc-
ture correspondence mechanism indiscriminately, however, would lead to prolifer-
ation of useless hypotheses such as milk-CM1<->high-temp-WTP. To avoid
this, states (and all agents having the tag :situation in general) are exempted
from the strong top-down structure correspondence—the hypotheses involving such
agents never generate any new hypotheses.

On the other hand, they could establish new justification links. To see why, con-
sider the hypothesis milk-CM1<->water-WTP. It has a justification that has
nothing to do with the membership of milk-CM1 in initst-CM1. Still this hy-
pothesis is consistent with initst-CM1<->initst-WTP and it is desirable to
establish excitatory links between the two. Such link would improve the connectiv-
ity of the constraint satisfaction network and strengthen the structural constraint on
mapping.

The main procedure for weak top-down structure correspondence is the follow-
ing: Retrieve all S-slots of the two states and construct all possible pairings among
them. Do not issue node construction requests, however. Instead, check the hypoth
slot (see Section 5.4.3) of the secretaries of each pair and look for an old hypothesis
representing the same correspondence. If such hypothesis is indeed registered at the
secretaries, establish excitatory links to it. If there is no such hypothesis, however,
then simply ignore the pair.

The weak SC has a bottom-up variant too. It is the converse of the ordinary top-
down SC. That is, instead of descending from propositions to arguments, it tries to
ascend from arguments to propositions. To illustrate, suppose milk-CM1 is an ar-
gument in the proposition in-CM1 and water-WTP in the proposition in-WTP.
Suppose further that there is a mature hypothesis milk-CM1<->water-WTP.
Then this hypothesis will try to establish a link to the hypothesis involving in-CM1
and in-WTP provided such hypothesis is registered at the respective secretaries.
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5.6 Rating and Promotion

The mechanisms presented so far are concerned primarily with generating hypothe-
ses and establishing links between them. The final goal of these efforts, however,
is to identify a set of correspondences. To that end, the model must make commit-
ments at some point. This is the main objective of the mechanisms discussed in this
section.

5.6.1 Rating Mechanism

5.6.1.1 Motivation

Each hypothesis on the secretary list of an entity agent represents a possible corre-
spondence between the entity and some entity “from the other side.” The one-to-one
constraint on mapping demands that each element from the one domain should map
to one element from the other. There is ambiguity, however, because each element
typically has several hypotheses registered at its secretary. The relaxation of the
constraint satisfaction network resolves these ambiguities using the inhibitory links
between the incompatible hypotheses.

A straightforward approach for determining the final set of correspondences is to
wait until the CSN settles and then select the hypotheses with maximal activation
levels. This strategy is implemented in ACME (Holyoak & Thagard, 1989), which
runs the network until all activation levels stabilize. This approach has two draw-
backs: (i) the decision to stop must be taken centrally and (ii) any post-mapping
processing can begin only after the mapping stage is over.

The rating mechanism avoids these limitations by promoting hypotheses dur-
ing the run. This allows smooth integration between mapping and post-mapping
processing. In particular, the processes of transfer (inference) and evaluation could
begin before the CSN has settled completely.

5.6.1.2 Main ideas

Let us introduce the following terminology: a (current) leader is the hypothesis with
the highest activation level in its set at the moment; a (final) winner is the hypothesis
that has been explicitly promoted and has metamorphosed into a winner-hypothesis
agent (cf. Section 5.4.4).

The main purpose of the rating mechanism is to monitor the hypotheses and
send promotion incentives to those of them that emerge as stable and unambiguous
leaders. In addition, it eliminates hypotheses that are obvious losers and triggers the
skolemization mechanism.
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The rating mechanism is carried out by the (secretaries of) instance agents.5 Not
all instances, however, are authorized to do so. Promoting winners is an important
commitment that should be done carefully and by an “impartial judge.” Therefore,
only the secretaries of the driver situation are authorized to promote winners. (In
the current version of AMBR, the driver situation is always the target. Future ver-
sions will switch the source analog as driver for the purposes of the transfer process
(Hummel & Holyoak, 1997). They will probably grant some limited rating authority
to recipient secretaries as well.)

Whenever an instance agent receives a hypothesis registration request (Sec-
tion 5.4.3), it checks if it is authorized to do ratings. The criterion is whether its
respective situation agent has a :driver tag in its modality slot. If authorized,
the secretary creates a data structure called a rating table and stores it in its buffer.
(Recall from Section 3.1.3 that each DUAL agent has some limited local memory.)
The rating table keeps individual ratings for all mature hypotheses on the secretary
list. Individual ratings are numerical quantities that characterize the relative success
of the respective hypothesis.

The secretary periodically performs rating surveys to adjust the ratings. Each
survey determines the current leader and increases its individual rating a little. The
ratings of all other hypotheses are decreased. The magnitude of the change is pro-
portional to the margin between the activation levels of the leader and its closest
competitor. (If there is only one hypothesis, its activation is compared against the
neutral level.) Thus, each rating value indicates how long the respective hypothesis
has been a leader, how recently, and how strongly so.

Each new hypothesis starts at some intermediate rating level and then goes up or
down depending on its relative standing in the total pool of competing hypotheses.
If the rating reaches some critical winner rating, the hypothesis is considered for
promotion. (It is not automatically promoted, however, as discussed below.) On the
other hand, if the rating drops below some critical loser rating, the hypothesis is
considered for elimination.

As a consequence of this computational scheme, hypotheses that are clear and
unambiguous leaders rapidly reach promotion. On the other hand, when there are
two or more competitors of equal strength or when there is a change in the leader-
ship, the secretary refrains from making premature commitments. The decision is
deferred until other secretaries announce their winners and change the balance in
the CSN.

5.6.1.3 Promotions and ballotages

When the individual rating of some hypothesis reaches the critical winner level, it
becomes a candidate for promotion. As this criterion is not always reliable by itself,
the secretary undertakes some additional last-minute checks to determine whether

5 Concept agents do not rate their hypotheses in the current version of AMBR. The so called promo-
tion propagation mechanism will extend this functionality. This mechanism was in experimental
stage in 1998 and is not reported here.
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the candidate really merits promotion or not. If it does, the secretary sends it a
promotion incentive. When the candidate is judged inappropriate, the secretary an-
nounces a ballotage, which means that the rating procedure should be repeated.

The rating mechanism is based on local information only—the activation levels
of the hypotheses registered at a single secretary. Hence, it sometimes favors hy-
potheses that are inconsistent with the global mapping as determined by the CSN as
a whole. The relaxation algorithm almost always succeeds to produce a consistent
set of leaders for all secretaries. This, however, often takes time, especially when
there are strong local anomalies that must be overcome.

Consider the following example. The problem presented in Section 5.1. involves
a teapot: tpot-CM1. It so happens in one particular run that the target situation
maps to a base with a dish (namely dish-FDO) instead of a teapot. As other
bases also compete in the CSN, there are alternative correspondences for the tar-
get teapot. One of them—tpot-WTP—proves to be an especially strong competi-
tor. In addition to its greater semantic similarity, it is also supported by the fact
that there is an explicit proposition about its material. A similar proposition partic-
ipates in the target description too. This leads to a triad of mutually supporting hy-
potheses: tpot-CM1<->tpot-WTP, made-of-CM1<->made-of-WTP, and
metal-CM1<->metal-WTP. It is difficult for dish-FDO, whose material is not
explicated, to beat this cluster singlehandedly.

Still, strong factors elsewhere in the CSN (other propositions, causal structure,
etc.) dictate that the target as a whole maps better to situation FDO than to situation
WTP. The secretary of tpot-CM1 does not know this, though. On its local list it
sees the hypothesis tpot-CM1<->tpot-WTP that has arrived first and remained
on top ever since. It consistently dominates the surveys and its individual rating
reaches the critical level. If it is promoted, however, it (and its made-of entourage)
would be an odd-man-out among all other winners from situation FDO.

One way to prevent blendings of this kind is to set a high critical level for pro-
motions. This will give time to the constraint satisfaction network to settle globally
and straighten up local inconsistencies. This approach, however, effectively entails
that all promotions occur after the mapping process is over. Subsequent processes
of transfer, evaluation, etc. must take place when the CSN is frozen. This brings the
model back to the pipeline paradigm that is antithetical to the spirit of AMBR (cf.
Section 3.2.1).

The current version of the model adopts a different strategy. The authorized sec-
retary takes a step out of the local neighborhood. Before issuing a promotion incen-
tive, it checks whether the candidate hypothesis is consistent with the leader at the
level of situations. In the example, the secretary of tpot-CM1 reads the situation
slot of the other element—tpot-WTP. Thus it learns that the latter is affiliated to
sit-WTP. The secretary then contacts its own situation-agent (namely sit-CM1)
and asks for the leader among the hypotheses at that level. It turns out that the
leader there is the hypothesis sit-CM1<->sit-FDO, which is incompatible with
sit-WTP. Therefore the secretary does not promote the candidate hypothesis.

Instead, tpot-CM1 announces a ballotage and undertakes measures to weaken
the unwanted hypothesis. It sends a message to the agent sit-CM1<->sit-FDO
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to create an inhibitory link to tpot-CM1<->tpot-WTP. This speeds up the relax-
ation of the CSN. It also sets the individual rating of the unwanted hypothesis back
to the initial level. The rating of the second best hypothesis is also modified if it is
below the initial level. Finally, the secretary triggers the skolemization mechanism
when appropriate (see Section 5.7). After all these emergency measures, it restarts
the rating surveys.

The previous paragraphs may create the impression that AMBR treats blends as
something that must be avoided at all cost. This is not the case. Blends do hap-
pen in human analogy-making (e.g., Kokinov & Zareva-Toncheva, 2001; Turner &
Fauconnier, 1995; Zareva & Kokinov, 2003) and should be accounted by cognitive
models. Such blends, however, happen on quite special circumstances and involve
bigger and more complex episodes. The ballotage discussed here is designed to
prevent blends with few isolated intruders into an otherwise homogeneous map-
ping. This aspect was improved in subsequent versions of the model (Grinberg &
Kokinov, 2003). Even the 1998 version could in principle produce heterogeneous
mappings when there is a change of the leading hypothesis at the level of situation-
agents.

5.6.1.4 Elimination of losers

In addition to promoting winners, the rating mechanism is also useful for weeding
out loser hypotheses. Recall that the ratings of all hypotheses except the leader are
decreased on each rating survey. When a rating drops below a critical threshold, the
respective hypothesis is considered for elimination. If its activation level is also low,
the hypothesis receives a fizzle message. Those hypothesis whose activation levels
are only moderately low are retained as potentially useful.

The elimination of losers adds another dimension to the dynamics of the con-
straint satisfaction network. It both grows and shrinks. New hypotheses are added
by various justifications. At the same time, loser hypotheses die out. As a conse-
quence, the size of the CSN varies dynamically, growing rapidly at first and then
shrinking back to retain only the most promising hypotheses. Usually, each promo-
tion is followed by a number of eliminations. At the end of the run, each secretary
list contains one winner and one or two (or zero) “reserve” hypotheses.

When the target elements are presented incrementally to the system (e.g., by
some perceptual mechanism), the “wavefront” of the CSN follows suite. In this
way the model seems to be able to handle situations that are much bigger than
the ones used in current simulation experiments. The size of the CSN need never
get very big. This has important consequences with respect to working memory
limitations (Keane et al., 1994; Hummel & Holyoak, 1997). It is also relevant to the
discussion of blending above—the target could match one base in the beginning,
form some stable correspondences, and then shift to another base that better fits the
target elements that have appeared in the interim.
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5.6.2 Promotion Mechanism

This section describes the events triggered by reception of a promotion incentive
in a hypothesis agent. This incentive marks the beginning of the third phase of the
life cycle of the hypothesis (cf. Section 5.4.4). The mature hypothesis transforms
into a winner. In the current version of the model this change involves nothing but
removing the :mature tag from its type slot and adding :winner in its place.
More radical restructuring is also possible (e.g., modifying the activation function,
decay rate, efficiency coefficient, etc.).

When the due restructuring is complete (and presumably it takes quite a lot of
time), the new winner sends metamorphosis notifications to its two secretaries to
inform them about the change. These notifications make the secretaries even more
severe to the losers in their hypoth slots. Only a few of the strongest (in terms of
activation level and/or ratings) alternatives are spared. These survivors are marked
by a :loser tag in their type slots. This tag is useful for detecting unmapped
elements as a prerequisite for transfer.

Moreover, each instance agent creates a temporary excitatory link to its coun-
terpart as designated by the winner hypothesis. For example, the metamorphosis
notifications from tpot-CM1<->dish-FDO causes each instance to create a link
to the other. This creates a direct route for receiving activation from the target and
helps to bring more elements of the source situation to the WM (cf. Figure 5.5).

5.7 Skolemization

5.7.1 Motivation

Most analogy models use semantic knowledge for two purposes only—as a source
of constraints on mapping and for similarity-based retrieval of episodes from long-
term memory (e.g., Falkenhainer, Forbus & Gentner, 1986; Holyoak & Thagard,
1989; Keane & Brayshaw, 1988; Kokinov, 1994a; Hummel & Holyoak, 1997). It is
clear, however, that human analogy-making uses semantic knowledge in much more
diverse ways than that. We list below two additional ways in which analogy-making
can utilize general knowledge about some domain.

First, semantic knowledge is used for reconstruction and elaboration of source
analogs. Research on autobiographical memory provides abundant evidence that
recollection of past episodes involves much reconstruction in addition to rote re-
trieval (e.g., Bartlett, 1932; Loftus, Feldman, & Dashiell, 1995; Schacter, 1995; see
Kokinov & Petrov, 2001, for more references and an extended discussion). It is rea-
sonable to expect that the same is true for recollection of past problems and their
solutions, examples from textbooks, etc. The reconstructive nature of memory, how-
ever, is ignored by the current models of analog retrieval.
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On the other hand, semantic knowledge is also used for elaboration of the tar-
get problem. It can even provide pieces of the solution. For example, the general
fact that plates are heat sources and as such are used to heat things is of obvious
relevance when asking how to heat water. In the important special case when the
participants read (or listen to) a textual description of the problem, there is psy-
cholinguistic evidence that readers make inferences about unstated elements of the
situation during the comprehension process. For instance, after listening to a sen-
tence such as “Alice pounded the nail until the board was safely secured,“ listeners
have been shown to infer that “Alice used a hammer.” (McKoon and Ratcliff, 1981).
Indeed, according to the constructivist hypothesis of discourse comprehension (e.g.,
Bransford, Barclay, & Franks, 1972), the encoding of comprehended text includes
substantial information that comes from general knowledge rather than the text it-
self. There is a debate in the psycholinguistic literature about the degree to which
inferences are made during the original encoding of the discourse or during sub-
sequent retrieval from memory (e.g., McKoon & Ratcliff, 1992). Howerver, there
is widespread consensus (Whitney, 1998) that some inferences are made during en-
coding (which is our second point here) and some are made during memory retrieval
(which is our first point). Current analogy models ignore both types of inferences.
In sum, a lot of very relevant semantic knowledge goes unused if analogy-making
is modeled exclusively in terms of finding correspondences between two episodes.

5.7.2 Main Ideas

AMBR skolemizationconstructs specific propositions on the basis of general propo-
sitions. It is a mechanism for elaborating the description of a situation using general
knowledge about its elements.

Recall from section 4.4. that a general proposition is a proposition involving
a general class instead of individual instance. If we ignore the details of the rep-
resentation scheme (cf. Figure 4.3), general propositions are most easily recog-
nized by the fact that at least one of their arguments is a concept agent. Thus,
made-of(teapot, metal) is a general proposition as opposed to the specific
made-of(teapot-MTF, metal-MTF). Typically only one of the arguments
of the general proposition is a concept; the other arguments are prototype instances.
This creates asymmetry that often better captures the semantics. To illustrate, the
proposition made-of(teapot, metal) could be read in two ways: “each
teapot is made of metal” and “each metal is the material of some teapot.” In contrast,
the proposition made-of(teapot, prototypical-teapot-metal) al-
lows only the first interpretation.

One way or another, a general proposition represents a fact about some class of
objects. The target problem and the episodes in the long-term memory, however, in-
volve specific instances. The purpose of skolemization is to bring the general fact to
the level of specific instances. This is done by constructing a new Skolem proposi-
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tion that parallels the general one but in which each concept or prototype argument
is replaced by a specific instance.

A question arises at this point, “Where do these specific instances come from?”
The AMBR answer is that they are either supplied by the marker passing mechanism
or created from scratch. The first choice is preferred whenever possible, falling back
to the second only in the absence of appropriate markers.

For example, suppose the skolemization mechanism works on the general propo-
sition made-of(teapot, metal). In order to specialize it, it needs instances
of the classes teapot and metal. Looking for such instances, it checks the buffers
of these concept agents for markers. Each marker originates from some instance
agent and propagates upward in the class hierarchy (see Section 5.3). Therefore,
the origins of all markers arrived at a concept agent are instances of this con-
cept. Suppose the buffer of teapot contains a marker from teapot-MTF. Thus,
teapot-MTF could be used as a specialization of the first argument of the gen-
eral proposition. The same check is done for the second argument. For the sake
of the example, suppose that the buffer of metal contains no markers. Therefore
the skolemization mechanism creates a new instance of this class. Such instances
are called Skolem instances. By an AMBR convention, their names begin with an
asterisk. Thus, the newly created agent may be named *metal-1.

After the skolemization mechanism finds an instance argument for each slot of
the general proposition, it is ready to construct the Skolem proposition. The last
ingredient is the head of the proposition. It is modeled on the template provided
by the head of the general proposition. (Note that the latter is an instance agent
belonging to some relational class, see Section 4.4.) In the example above, suppose
the new agent is called *made-of-1. It is an instance of the relation made-of
and its two S-slots are filled by teapot-MTF and *metal-1, respectively.

The final result of the whole process is that there is a proposition explicating the
material of teapot-MTF. Like all teapots, it is made of metal.

Note that the general proposition may involve a concept higher in the class hier-
archy. To extend our example, saucepans, pans, and baking dishes are made of metal
too. A single general proposition can cover them all: made-of(cook-vessel,
metal).

5.7.3 Triggering Skolemization

Most of the work related to skolemization is carried out of the symbolic processor
of a general hypothesis. This section describes how such hypotheses are created and
prompted to perform skolemization.

A general hypothesis is a hypothesis involving a general proposition. It is created
by the marker passing mechanism in the usual way. That is, the head of the general
proposition (which is an instance agent) emits a marker when entering the WM.
This marker propagates in the usual way and can intersect with other markers. As
discussed in Section 5.3, when two complementary markers intersect they give rise
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to a semantically justified hypothesis. Complementarity rules in this case specify
that the other marker must originate from some driver element. Hence, the new
hypothesis involves a proposition from the driver situation on one hand, and the
general proposition on the other.

Note that even though the semantic memory can potentially have thousands of
general propositions, only a small fraction of them (if any) are used in each particu-
lar task. These “privileged” propositions are determined by the driver. The elements
of the driver transmit the activation necessary for bringing the general propositions
(like any agents) to the working memory. Their markers are prerequisite for the
creation of general hypotheses (like any hypotheses).

Consider an example: The target problem CM1 (see Section 5.1) contains the
proposition made-of(tpot-CM1, metal-CM1). The head of this proposi-
tion is the instance agent made-of-CM1. In the run that serves as an illustra-
tion throughout this chapter, the latter agent happens to form the following general
hypotheses: made-of-CM1<->ckves-made-of-metal and made-of-CM1
<->bottle-md-glass. Each of them involves a general proposition and could
be skolemized.

The actual skolemization process begins when the general hypothesis receives a
skolemization incentive from an authorized secretary. The rating mechanism is re-
sponsible for determining which hypotheses receive such incentives, if any. General
hypotheses register at the secretaries and participate in rating surveys in the usual
way. If such hypothesis is the leader in its set, its rating goes up. When it reaches
some critical level, the hypothesis receives a skolemization incentive.

General hypotheses are quite weak compared to hypotheses involving specific
propositions. It is, therefore, quite rare that a general hypothesis wins the rating.
This is good because affiliated propositions should be preferred to Skolem proposi-
tions anyway. In the example above, suppose that tpot-CM1 maps to some other
teapot whose material is explicitly represented too. Under these circumstances the
driver proposition made-of-CM1 naturally maps to the respective recipient propo-
sition and there is no need for skolemization. And so it happens—the specific hy-
pothesis wins the rating and the general hypothesis never receives any skolemization
incentive.

Skolemization incentives are also sent during ballotages (see section 5.6.1.2).

5.7.4 Links to Related Research

The term skolemization is used in formal logic in honor of the Norwegian mathe-
matician Thoralf Skolem who introduced a method for replacing existentially quan-
tified variables with constants or functions. The simplest type of skolemization is
the so-called existential instantiation6 (e.g., Russell & Norvig, 2009). It simpli-
fies formulas of the type ∃yP(y) into P(c), where c is a new constant. Our ex-

6 Indeed, the term skolemization was abandoned in favor of instantiation in subsequent AMBR
publications (e.g., Kokinov & Petrov, 2000, 2001).
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ample above is based on the existential sentence, “There exists an entity y such
that is-metal(y) and made-of(tpot-MTF,y).” The foundational intuition
of the instantiation procedure is that the Skolem constant is just giving a name to
the entity whose existence is asserted in the original sentence.

The situation is more complicated when the existential quantifier is within
the scope of a universal quantifier. Consider the sentence, “Every person has a
mother.” It is an abbreviation of the doubly quantified formula, “For any entity x, if
is-human(x) then there exists an entity y such that is-mother-of(x,y).”
Notice that if we replace the existentially quantified variable y with a constant, say
Eve, we get a completely different statement that asserts (erroneously) that Eve
is a mother of each and every person. The correct skolemization rule in such cases
is to replace y not with a constant but with a Skolem function of the universally
quantified variables with the relevant scope. The substitution template is to replace
∀x∃yP(x,y) with P(x, f (x)), where f (·) is a new function. In our example, a good
name for this function would be the-mother-of. Again, we are just giving a
name to a function whose existence has been asserted by the original sentence.

Substitution rules such as these help convert a given first-order formula into the
so-called Skolem normal form that has no existential quantifiers and all universal
quantifiers appear to the left of everything else.7 Thoralf Skolem proved that the
transformed formula is satisfiable if and only if the original formula is satisfiable.
Skolemization is an important step in many automated theorem-proving algorithms
and is used in many symbolic AI systems (e.g., Russell & Norvig, 2009).

In the analogy literature, to our knowledge the term skolemization appears only
in Falkenhainer, Forbus, and Gentner (1989). The Structure Mapping Engine gener-
ates candidate inferences in the target on the basis of information from the source.
These candidate inferences often include entities. Whenever possible, SME replaces
all occurrences of base entities with their corresponding target entities. This is anal-
ogous to AMBR’s reliance on the marker-passing mechanism to identify and use
existing instances. When the source contains an entity that has no corresponding
target entity (and is not a constant such as zero that can be transferred verbatim),
“SME introduces a new hypothetical entity into the target which is represented as a
Skolem function of the original base entity.” (Falkenhainer et al., 1989, p. 22).

It is instructive to compare the skolemization mechanisms in AMBR and SME.
Apart for the common terminology, they are similar in that both introduce a new en-
tity into the description of some situation. In both systems, skolemization is guided
by the mapping between a target and a source. However, the two mechanisms also
differ in important respects. In SME, the Skolem entity is introduced into the target
and is not supported by semantic knowledge. Its only support is the presence of an
unmapped entity in the source situation. (SME maps only one source at a time.) An
additional constraint is that candidate inferences must be structurally grounded in
an interlocking system of corresponding relations. In short, SME skolemization is a
form of analogical transfer. The Skolem functions that SME generates can be read
as follows: “a conjectural entity in the target that corresponds to this entity in the

7 This sets the stage for the next simplification step, which is to drop all remaining quantifiers and
thereafter treat each free variable as if it is implicitly universally quantified.
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source.” Falkenhainer et al. (1989, p. 35) point out that scientists sometimes consider
such conjectural entities. For eample, ether was postulated to provide a medium for
the propagation of light waves because other kinds of waves require a medium.

By contrast, AMBR skolemization introduces new entities into the source episodes
retrieved from long-term memory. Thus, it is a form of reconstructive memory
(Kokinov & Petrov, 2000, 2001). Also, it is guided by semantic knowledge and not
just by systematic correspondences to the target. Therefore, at least in some cases it
produces deductive inferences that are as valid as the general propositions that sup-
port them. The proposition “Every person has a mother.” illustrates this point well.
With less certain propositions, skolemization supplies default values that are not
guaranteed to be correct. This is a form of schematization (e.g., Barclay, 1986). All
cases involve an intimate interplay of analogical mapping, memory access, and re-
representation, and illustrate the utility of AMBR’s interactive approach (Figure 3.4).

The version of AMBR described in this book does not implement analogical
transfer, but the skolemization mechanism will undoubtedly prove very useful in
this regard. Section 7.1 sketches some ideas about extending AMBR’s functionality
in this direction. One general term in the literature on analogical inference is copy
with substitution and generation (Holyoak, Novick, & Melz, 1994). Skolemization
is a good mechanism for the generation component.

5.8 Putting It All Together

This section closes the description of AMBR by completing the example introduced
in Section 5.1. It shows how the mechanisms of the model work together.

After the target problem CM1 is presented to the system, activation spreads in
the network and brings relevant concepts and instances to the working memory (see
Section 5.2). Two base situations are activated most and become the major competi-
tors to map to the target. These are the situations FDO and WTP. Of the two, FDO
will turn out to be the final winner. Figure 5.11 plots the retrieval indices of the
two situations. The retrieval index is computed as the mean activation level of all
agents affiliated to the respective situation-agent. It is an aggregate numerical mea-
sure of the overall accessibility of each episode. Note that these indices are neither
computed nor used by the model. They are instruments for monitoring the emergent
behavior of the system from the point of view of an external observer.

Figure 5.11 shows that early during the run the two rival coalitions are equally
active. Later on, however, FDO continues to grow while WTP levels off and then
even goes down. This difference is due to the influence of the mapping process as
discussed below.

Note that the winner coalition gets strength gradually. In other words, the base
episode FDO is not retrieved in an all-or-nothing fashion. Instead, agents enter the
working memory one by one. This is characteristic of the decentralized representa-
tion of situations discussed in Chapter 4. The transcript in Figure 5.12 lists the exact
moments in which individual elements pass the working memory threshold. As ev-
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Fig. 5.11 Retrieval indices
for two competing coalitions:
FDO and WTP. The retrieval
index quantifies the overall
accessibility of each episode.
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T=0.40, adding t-of-FDO-o to WM.
T=0.42, adding in-FDO-do to WM.
T=0.78, adding t-of-FDO-f to WM.
T=0.80, adding oven-FDO to WM.
T=0.84, adding high-t-FDO to WM.
T=1.78, adding sit-FDO to WM.
T=1.80, adding dish-FDO to WM.
T=2.68, adding initst-FDO-1 to WM.
T=2.86, adding food-FDO to WM.
T=3.40, adding on-FDO to WM.
T=6.60, adding goalst-FDO to WM.
T=8.20, adding in-FDO-fo to WM.
T=25.30, adding interst-FDO to WM.
T=29.70, adding to-reach-FDO to WM.
T=29.80, adding cause-FDO-t to WM.
T=31.10, adding follows-FDO to WM.
T=31.20, adding endst-FDO to WM.
T=68.00, adding cause-FDO-i to WM.
T=68.10, adding initst-FDO-2 to WM.

Fig. 5.12 Transcript showing the moments in which various members of situation FDO enter the
working memory.

ident from the transcript (and from the step-like increase of the retrieval index in
Figure 5.11), the description of the episode is retrieved from the long-term memory
in three parts—roughly at times 8, 30, and 68.

The first group of agents enters the WM by time 8.20. It consists of the elements
that are closest to the description of the target problem (cf. Figures 5.1 and 5.2). The
causal structure of the base episode is not unfolded yet. It is not present in the target



96 5 AMBR Mechanisms at Work

Fig. 5.13 Mapping indices
for two competing coalitions:
FDO and WTP. The mapping
index quantifies the aggregate
strength of the hypotheses
connecting a given source sit-
uation to the target situation.
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either. Hence, the working memory now contains two descriptions of comparable
complexity. This is favorable for the mapping process (cf. Section 4.5.2).

Meanwhile, the marker passing and structure correspondence mechanisms gen-
erate a number of hypotheses. They register at their respective secretaries and are
incorporated into the constraint satisfaction network. The competition in the CSN
can be monitored with the aid of the mapping indices plotted in Figure 5.13. The
mapping index is an aggregate numerical measure of the strength of the hypotheses
between two situations. Like the retrieval index, it is not used by the model itself.

At time 25 the hypotheses involving FDO elements start to dominate the CSN.
The additional activation that they send to the main network allows a second group
of agents to enter the working memory. These are the agents that explicate the causal
structure of situation FDO. As this episode emerges as the likely winner, it is getting
ready for the processes of transfer and evaluation.

There are more obstacles to be overcome, however. The leading set of correspon-
dences includes an unwanted element—tpot-WTP and its supporting proposition
made-of-WTP and metal-WTP. It manages to beat dish-FDO because the lat-
ter lacks an explicit representation of its material. As discussed in Section 5.6.1.2,
the rating mechanism detects the blend and announces a ballotage. It also triggers
the skolemization mechanism.

The semantic memory contains a general proposition that all cooking vessels are
made of metal. As baking dishes are a subclass of cooking vessels, the skolemiza-
tion mechanism generates a Skolem proposition stating that dish-FDO is made
of metal too. This occurs between time 80 and 87.60. The transcript in Figure 5.14
lists the Skolem messages that are exchanged during this process. The skolemization
mechanism adds two new agents to the recipient situation.

Note that thisis a form of re-representation of the base aimed at bringing it in
line with the target problem. As the target contains an explicit proposition about the
material of the teapot, the source builds a corresponding counterpart. This is also an
example of reconstructive memory (Kokinov & Petrov, 2001). On the other hand,



5.8 Putting It All Together 97

T=80.00, #<SkI MADE-OF-CM1> received in MADE-OF-CM1<-->
CKVES-MD-METAL.

T=80.50, made-of-CM1<-->ckves-md-metal begins skolemization.
T=81.90, #<SM1 MADE-OF-CM1<-->CKVES-MD-METAL> received in

*MATERIAL-METAL-1.
T=82.10, #<SM1 *MATERIAL-METAL-1> received in

MADE-OF-CM1<-->CKVES-MD-METAL.
T=82.80, *material-metal-1 affiliates to sit-FDO.
T=84.20, #<SM2 MADE-OF-CM1<-->CKVES-MD-METAL> received in

*MADE-OF-1.
T=85.00, #<SM2 *MADE-OF-1> received in MADE-OF-CM1<-->

CKVES-MD-METAL.
T=87.60, *made-of-1 affiliates to sit-FDO.

Fig. 5.14 Transcript showing the events related to the skolemization mechanism. #<SkI xxx>
is a Skolem incentive and #<SM1 xxx> and #<SM2 xxx> are Skolem messages of different
kinds. See text for details.

the proposition shape-of(dish-FDO, rectang-FDO) that is included in
the original description of that episode never enters the WM. This demonstrates
the flexibility of the decentralized representation of AMBR situations.

After the skolemization, the mapping index of WTP (the competitor) drops
rapidly (see Figure 5.13). FDO is now clear and unambiguous winner. There are,
however, some final rearrangements of the correspondences. In particular, the se-
mantically grounded hypothesis in-CM1<->in-FDO-do gives way to in-CM1
<->on-FDO under the influence of the structural constraint on mapping. The ambi-
guity between the two temperature-of propositions in the base is also resolved.
Table 5.1 lists the set of correspondences that lead the ratings at three different times.

Table 5.1 Leading correspondences for each target element at different times during the run. Tar-
get elements are listed in the left column. See text for details.

Target element T = 50 T = 100 T = 200

sit-CM1 sit-FDO sit-FDO sit-FDO
milk-CM1 oven-FDO food-FDO food-FDO
tpot-CM1 tpot-WTP oven-FDO dish-FDO
in-CM1 in-FDO-do in-FDO-do on-FDO
T-of-CM1 T-of-FDO-oven T-of-FDO-food T-of-FDO-food
low-T-CM1 high-T-FDO high-T-FDO high-T-FDO
made-of-CM1 made-of-WTP *made-of-1 *made-of-1
metal-CM1 metal-WTP *metal-1 *metal-1
initst-CM1 initst-FDO-1 initst-FDO-1 initst-FDO-1
goalst-CM1 goalst-FDO goalst-FDO goalst-FDO
to-reach-CM1 to-reach-FDO to-reach-FDO to-reach-FDO





Chapter 6
Simulation Experiments

6.1 Description of the Knowledge Base

This chapter reports the results of several simulation experiments performed with
AMBR. The long-term memory of the model is the same for all experiments, with
variation of some links as described below.

The LTM consists of 569 permanent agents. 273 of them are concept-agents
and encode semantic knowledge about the micro-domain introduced in section
4.1. For example, it is represented that tea, milk, and water are subclasses
of drinkable-liquid, which in turn is subordinate to liquid. The system
“knows” that temperature-of is a physprop-relation and that its first ar-
gument must be an object while the second one a temperature-qualifier
such as high-temp or low-temp. The semantic memory also contains 49
instance-agents. Most of them are general propositions such as heat-source-is
-hot and bottle-made-of-glass.

The remaining agents in the long-term memory represented twelve simple situa-
tions. These situations are outlined below. Appendix A contains a full description of
one of them as taken directly from the source file fed to the program. Appendix B
contains simplified representations in predicate calculus of all situations.

Base situation WTP (Water in a Teapot on a Plate): There is some water in a
teapot. The teapot is made of metal and its color is black. There is also a hot plate.
The teapot is on the plate. The temperature of the plate is high.

The goal is that the temperature of the water is high.
The outcome is that the temperature of the teapot is high because it is on the hot

plate. In turn, this causes the temperature of the water to be high, as it is in the
teapot.

Base situation BF (Bowl on a Fire burns out): There is some water in a bowl. The
bowl is made of wood. There is also a fire. The bowl is on the fire. The temperature
of the fire is high.

The goal is that the temperature of the water is high.

99
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The outcome is that the bowl burns out because it is made of wood and is on the
fire. In turn, this causes the water to dissipate, as it is in the bowl.

Base situation GP (Glass on a hot Plate breaks): There is some water in a glass.
The glass is made of [material] glass. There is also a hot plate. The glass is on the
plate. The temperature of the plate is high.

The goal is that the temperature of the water is high.
The outcome is that the glass breaks because it is made of [material] glass and

is on the hot plate. In turn, this causes the water to dissipate, as it is in the glass.

Base situation IHC (Immersion Heater in a Cup):1 There is some water in a cup.
There is an immersion heater in the water. The immersion heater is hot. The cup is
on a saucer. The cup is made of china.

The goal is that the temperature of the water is high.
The outcome is that the temperature of the water is high due to the hot immersion

heater in it.

Base situation FDO (Food on a Dish in an Oven):2 There is a baking dish and
some food on it. The shape of the dish is rectangular. There is also an oven. The dish
is in the oven. The temperature of the oven is high.

The goal is that the temperature of the food is high.
Since the food is on the dish which in turn is in the oven, the food is in the oven

too. This causes the temperature of the food to be high, as the temperature of the
oven is high.

Base situation MTF (Milk in a Teapot in a Fridge): There is some milk in a
teapot. The color of the teapot is green. There is also a fridge. The teapot is in the
fridge. The temperature of the fridge is low.

The goal is that the temperature of the milk is low.
Since the milk is in the teapot which in turn is in the fridge, the milk is in the

fridge too. This causes the temperature of the milk to be low, as the temperature of
the fridge is low.

Base situation ICF (Ice Cube in a Fridge):3 There is an ice cube on a glass. The
glass is made of [material] glass. There is also a fridge. The glass is in the fridge.
The temperature of the fridge is low.

The goal is that the temperature of the ice cube is low.
Since the ice cube is on the glass which in turn is in the fridge, the ice cube

is in the fridge too. This causes the temperature of the ice cube to be low, as the
temperature of the fridge is low.

1 See Figure 6.7 for a schematic diagram.
2 See Figure 5.2 for a schematic diagram.
3 See Figure 6.8 for a schematic diagram.
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Base situation BPF (Butter on a Plate in a Fridge): There is some butter on a
plate. The plate is made of china and its shape is circular. There is also a fridge.
The plate is in the fridge. The temperature of the fridge is low.

The goal is that the temperature of the butter is low.
Since the butter is on the plate which in turn is in the fridge, the butter is in the

fridge too. This causes the temperature of the butter to be low, as the temperature of
the fridge is low.

Base situation STC (Sugar in Tea in a Cup): There is some tea in a cup. There
is some sugar in the tea. The taste of the sugar is sweet. The cup is on a saucer.

The goal is that the taste of the tea is sweet.
The outcome is that the taste of the tea is sweet due to sugar in it.

Base situation SFF (Salt in Food in a Fridge): There is some food on a plate.
There is some salt in the food. The taste of the salt is salty. There is also a fridge.
The temperature of the fridge is low.

The goal is that the temperature of the food is low.
The outcome is that the food is both cold and salty. Since the food is on the plate

and the plate is in the fridge, the food is in the fridge too. This causes the temperature
of the food to be low. In the same time, the salt that is in the food causes its taste to
be salty.

Base situation ERW (Egg in Red Water): There is some water in a teapot. The
color of the water is red. The teapot is made of metal. There is also an egg which is
in the water.

The goal is that the color of the egg is red.
The outcome is that the color of the egg is red because it is in the red water.

Base situation GWB (Glass in a Wooden Box): There is a glass. It is made of
[material] glass. The glass is in a box. The box is made of wood.

The goal is that the box protects the glass.
The outcome is that the box protects the glass.

The verbosity of these (simplified) descriptions reveal how much knowledge
is involved even in the seemingly trivial task of heating water. As simple and
monotonous as they are, the twelve situations are designed to highlight various
subprocesses of analogy-making. The descriptions involve objects and relations in
different combinations and at various levels of similarity. Many episodes involve
identical objects but are not isomorphic. Others go the other way around. Some
episodes fail to achieve their goal and/or have side effects besides the main goal.
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6.2 Statistics Over 1000 Runs

6.2.1 Experimental Setting

This section tests the behavior of the model on ten target problems. The goal is to
check whether the model can reliably access episodes from long-term memory and
map them to the target.

Each target problem is run 100 times, yielding a total of 1000 runs for the ten
problems. All parameters of the model are kept constant across all runs (and across
all experiments reported in this book in general).

The architecture DUAL is completely deterministic. The behavior of a DUAL-
based model such as AMBR depends on five factors (i) the target problem, (ii) the
contents of the long-term memory, (iii) the order of presentation of target elements
(order effect), (iv) the residual activation in the long-term memory (priming effect),
and (v) the external environment (context effect). The experiments reported in this
section vary the first factor as independent variable and use the second one as source
of replications. The remaining factors are kept constant. (They are explored in sepa-
rate experiments. Kokinov (1994a) has demonstrated priming and context effects in
an earlier version of AMBR. Order effects are explored in section 6.4 below.)

The knowledge base is replicated 100 times for the purpose of the experiments.
Each variant contains the same 569 permanent agents outlined in section 6.1. Most
of the links among them are the same too. There are, however, some links that vary
randomly across the 100 variants. They are “top-down” links from concepts to in-
stances (i.e. links labeled instance). The sampling procedure for picking up links
for each KB variant is designed to approximate the (unimplemented) mechanism for
dynamic “privileged instances” suggested in section 4.3. A small number of asso-
ciative links (a-link) also differ randomly across KB variants. Thus it could be
said that each variant represents a “snapshot” of the long-term memory of the sys-
tem. The core KB contains approximately 3000 links. Each variant adds about 100
new links (which amounts to less than 4% of the total network connectivity).

Each target problem is run on each KB variant for 200 time units. This period
is enough for the model to promote a winner situation in all but one of the 1000
runs. (In this exceptional run the model failed to access any episode from LTM to a
sufficient degree.) The dependent variable is the number of times that each source
situation is accessed and mapped to the particular target problem.

The activation level of all permanent agents is set to zero at the beginning of
each run (i.e. there is no priming). Each target situation is represented by temporary
agents. Some of them are attached to the goal and input nodes of the system. All
attachments are done simultaneously at the beginning. The input node does not ac-
tivate any agents apart from the target elements (i.e. the external context is ignored).
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6.2.2 Heating Milk

The first pair of problems that are presented to the system involve heating milk (in
the micro-domain). There are complementary to each other in the sense that the first
has an explicit representation of the goal but the initial conditions are incomplete. In
contrast, the second problem specify the initial arrangement in full and asks about
the expected outcome of this arrangement. Appendix B contains simplified repre-
sentations in predicate calculus of all target situations.

Target situation HM1 (Heating Milk, variant 1): There is a teapot and some
milk in it. The teapot is made of metal.

The goal is that the temperature of the milk is high.

Target situation HM2 (Heating Milk, variant 2): There is a teapot and some
milk in it. The teapot is made of metal. There is also a hot plate. The teapot is on the
plate. The temperature of the plate is high.

The goal, if any, is not represented explicitly.
What is the outcome of this state of affairs?
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Fig. 6.1 Bar plots showing the frequencies of mapping each long-term memory episode to target
problems HM1 and HM2, respectively.

The bar plots in Figure 6.1 demonstrate that in the majority of cases (54% of
the runs) the model maps the target HM1 to the prototypical source episode about
heating liquids—situation WTP. In these cases AMBR notices the analogy in which
milk-HM1 maps to water-WTP.

Two other sources stand out against the rest. Situation MTF is another good
match. Its liquid is the same, but it requires the reversal high-temperature<->
low-temperature. The fact that it is three times less frequent than WTP demon-
strates that AMBR is sensitive to pragmatic pressures. The same pressures explain
the frequency of situation IHC too—it represents an alternative way to heat liquids
(by an immersion heater).
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The second variant of the target problem (HM2) generates a similar pattern. The
main difference is that situation WTP becomes even stronger (68%) at the expense
of IHC. After all, the target problem contains a hot plate, not an immersion heater.

The bar plots reveal also that the model is not confined to the most obvious solu-
tions to a problem. It reaches them most of the time (as it should) but occasionally it
chooses more remote analogs. These are the cases with frequencies below 5% in the
graphs. Most of them are episodes having some superficial similarity to the target:
a teapot, goal related to high temperature, etc. These low-frequency answers are an
important attestation of AMBR’s flexibility.

6.2.3 Cooling Milk

The second pair of problems is similar to the first except that it deals with low tem-
peratures. It tests whether AMBR is able to respond to a small (yet crucial) change
in the target description.

Target situation CM1 (Cooling Milk, variant 1):4 There is a teapot and some
milk in it. The teapot is made of metal.

The goal is that the temperature of the milk is low.

Target situation CM2 (Cooling Milk, variant 2): There is a teapot and some
milk in it. The color of the teapot is black. There is also a fridge. The teapot is in the
fridge. The temperature of the fridge is low.

What is the probable goal for this arrangement?
The outcome of this state of affairs is not known.
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Fig. 6.2 Bar plots showing the frequencies of mapping each long-term memory episode to target
problems CM1 and CM2, respectively.

4 See Figure 5.1 for a schematic diagram.
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A brief comparison between the left plots in Figures 6.1 and 6.2 reveals that
change in the filler of a single slot in a single target agent can turn the behavior of
AMBR to 180 degrees. Specifically, the inst-of slot of low-T-CM1 (the second
argument of temperature-of-CM1) is filled with a reference to the concept
agent low-temperature while the respective slot in high-T-HM1 points to
high-temperature. (The names of the agents themselves are of course irrele-
vant.) This change is small but it is in a very important place—the respective agent
is attached the goal node and the activation it provides to its parent concept is a ma-
jor determinant of the overall content of the working memory. As a consequence,
CM1 maps to MTF in 59% of the runs versus 19% for WTP. In contrast, the re-
spective percentages for the target problem HM1 are 54% vs. 19%. (Recall that
the experiment uses within-subject design as the two targets run over the same set
of knowledge bases.) Clearly, the pragmatic constraint plays an important role in
AMBR.

Let us now turn to the other problem in the pair: CM2. It is literally similar to
the base situation MTF (Gentner, 1983, 1989). The only difference in the two de-
scriptions, apart from the incompleteness of the target, is the color of the teapots.
As seen in Figure 6.2, MTF wins in full 75% of the cases. This is the maximal fre-
quency among all 1000 runs. All rival episodes occur with marginally low probabil-
ities. This suggests that AMBR models accurately the empirical finding that analog
access is dominated by literal similarities (Gentner & Landers, 1985; Holyoak &
Koh, 1987; Ross, 1987).

6.2.4 When the Container is Fragile

The next pair is inspired by the target problem from experimental studies on priming
effects (Kokinov, 1990, 1994a). The subjects in these studies were asked how one
could heat water in a wooden bowl in a forest. Kokinov (1994a) performed related
simulation experiments in the micro-domain.

Target situation WB1 (Water in a Bowl): There is a bowl and some milk in it.
The bowl is made of wood.

The goal is that the temperature of the water is high.

Target situation WG1 (Water in a Glass): There is a glass and some water in
it. The glass is made of [material] glass.

The goal is that the temperature of the water is high.

As evident from Figure 6.3, the model is split between two responses to the first
problem. WTP is the prototypical case for heating liquids. It could not generate a
good solution to the problem, however, as it suggests to put the bowl on the fire
where it would burn. Still, it provides a sound match to the target. The other strong
episode is BF which is an unsuccessful past attempt to solve this problem.
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Note that the source analog that provides the “immersion heater” solution (IHC)
works in only 6% of the cases. Incidentally, the subjects of (Kokinov, 1990) had
similar difficulties in the absence of priming.
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Fig. 6.3 Bar plots showing the frequencies of mapping each long-term memory episode to target
problems WB1 and WG1, respectively.

In an attempt to increase the probability of using the immersion heater, target
problem WG1 replaces the wooden bowl with a glass. (Situation IHC involves a
cup.) The attempt is moderately successful—the frequency of IHC increases to 11%.
As a side effect, situation GP takes the place of BF. A look at the descriptions of
these two episodes (see Section 6.1) shows that this is to be expected.

6.2.5 Scaling Up: Problems Involving Taste

The problems in this section go away from the temperature-related focus of the
current knowledge base. They deal with tastes and are intended to check whether
the model is able to switch to this different thematic line. The base episodes are
added to the long-term memory for similar reason.

Target situation SF1 (Salty Food, variant 1): There is a plate and some food on
it. The plate is made of china.

The goal is that the taste of the food is salty.

Target situation SF2 (Salty Food, variant 2): There is a plate and some food on
it. There is some salt in the food.

The goal, if any, is not represented explicitly.
What is the outcome of this state of affairs?

The bar plots in Figure 6.4 show that indeed the two episodes related to taste are
accessed by these targets. Note also that situations STC, SFF, and BPF almost never
show up for other target problems. This gives reasons for some optimism about the
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Fig. 6.4 Bar plots showing the frequencies of mapping each long-term memory episode to target
problems SF1 and SF2, respectively.

ability of AMBR to scale up to larger memory sizes. It suggests that adding more
and more episodes and different “thematic lines” will not lead to diffusion of the
answers. Of course, this topic should be explored more rigorously with future (and
bigger) versions of the knowledge base. We fully agree that memory of 12 episodes
is very insufficient to support any serious claims about the scalability of the model.

6.2.6 Two Final Problems

Target situation EHW (Egg in Hot Water): There is a teapot and some water in
it. There is an egg in the water. The teapot is made of metal. The color of the egg is
white. The temperature of the water is high.

The goal, if any, is not represented explicitly.
What is the outcome of this state of affairs?

Target situation ICC (Ice Cube in Coke): There is a glass and some coke in
it. The glass is made of [material] glass. There is an ice cube in the coke. The
temperature of the ice cube is low. There is also a table. The glass is on the table.

The goal, if any, is not represented explicitly.
What is the outcome of this state of affairs?

The target problem EHW and its long-term memory counterpart ERW are added
for similar scaling-up considerations. Problem ICC is used for the experiment dis-
cussed in Section 6.3. The respective bar plots are shown in Figure 6.5.
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Fig. 6.5 Bar plots showing the frequencies of mapping each long-term memory episode to target
problems EHW and ICC, respectively.

Table 6.1 Joint distribution for all 1000 runs. Each cell gives the frequency of accessing and
mapping a target problem (row) to a source episode (column).

Target WTP BF GP IHC MTF ICF BPF FDO STC SFF ERW GWB Total

HM1 54 3 2 13 19 1 4 4 100
HM2 68 2 1 5 20 1 3 100
CM1 19 1 4 59 5 2 4 1 5 100
CM2 4 2 1 2 75 3 3 1 4 5 100
WB1 33 44 4 6 1 3 3 1 2 3 100
WG1 38 4 21 11 5 3 4 8 6 100
SF1 1 3 7 1 20 1 10 53 1 2 99a

SF2 3 6 4 5 6 5 3 11 53 3 1 100
EHW 37 2 11 9 1 4 1 35 100
ICC 8 3 19 4 20 30 1 4 3 6 2 100
Total 264 68 55 68 214 47 32 31 25 118 63 14 999

a On one run with target problem SF1, no situation agent was promoted as winner.

6.2.7 Variability and Determinism

Table 6.1 summarizes the results of these simulations by presenting the joint dis-
tribution produced by all 1000 runs. The fact that few cells are completely empty
indicates that the model populates all regions of its problem space. That is, there is
some small probability to map any source analog to almost any target. No possibili-
ties are ruled out a priori. On the other hand, AMBR focuses on the episodes that best
fit any given problem. It is efficient without being rigid. This is a consequence of
the dynamic emergent style of computation that is characteristic of DUAL (Kokinov,
Nikolov, & Petrov, 1996).

Note also that although AMBR is completely deterministic, it is still able to
demonstrate the variability of behavior evident from the table. As described in Sec-
tion 6.2.1., the random factor in the experiment amounts to less than 4% of the
initial links in the long-term memory. Nevertheless, each target problem generates
a whole range of answers. This is again a consequence of the dynamic emergent
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style of computation. The macroscopic behavior of the system depends on a mul-
titude of interrelated microscopic factors. A small change in the initial conditions
can drift the global outcome far away in the problem space. Therefore, the macro-
scopic behavior of AMBR must be analyzed in probabilistic terms even though all
microscopic mechanisms are deterministic.

6.3 Influence of Mapping on Analog Access

6.3.1 Simulation Experiment Method

This section presents a case study exploring the integration of analog access and
mapping in AMBR. It contrasts two strategies for combining access and mapping—
parallel vs. serial.

6.3.1.1 Design

The experiment consists of two conditions. Both conditions involved running the
model on a target problem. In the parallel condition, AMBR operates in its normal
manner with the mechanisms for access and mapping working in parallel. In the se-
rial condition, the program is artificially forced to work serially—first to access and
only then to map. The target problem and the content of the long-term memory are
identical in all runs. The topics of interest fall into two categories—the final map-
ping constructed by the program and the dynamics of the underlying computation.
The latter is monitored by recording a set of variables describing the internal state
of the system at regular time intervals throughout each run.

6.3.1.2 Materials

The experiment uses the knowledge base described in section 6.1. Situation ICC (Ice
Cube in Coke) is the target problem. Its verbal description is given in Section 6.2.6.
Two of the twelve episodes are most important for the present discussion: situations
IHC (Immersion Heater in a Cup with water) and ICF (Ice Cube in a Fridge).

As evident from Figures 6.6, 6.7, and 6.8, both situations IHC and ICF may
be considered similar to the target problem. There are some differences, however.
Situation ICF involves the same objects and relations as the target but the structure
of the two are different. In contrast, situation IHC involves different objects but
its system of relations is completely isomorphic to that of the target. According to
Gentner (1989), the pair IHC–ICC may be classified as analogy while ICF–ICC as
mere appearance. Thus it is expected that situation ICF would be easier to retrieve
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Fig. 6.6 Schematized representation of target situation ICC. Objects are shown as boxes and rela-
tions as arrows. The actual AMBR representation is more complex and consists of 15 agents.

from the total pool of episodes stored in LTM. On the other hand, IHC would be
more problematic to retrieve but once accessed it would support better mapping.

6.3.1.3 Procedure

The model is run two times on the target problem. The two runs carry out the parallel
and serial conditions of the experiment, respectively. The contents of the long-term
memory and the parameters of the model are identical in the two conditions.

Recall that situations have decentralized representations in AMBR. The target
problem is represented by a coalition of 15 agents standing for the ice-cube, the
glass, two instances of the relation in and so on (See Appendix B). 12 of these agents
are attached to the special nodes that serve as activation sources in the model. The
attachment is the same in the two experimental conditions.

In the parallel condition, the model is allowed to run according to its specifica-
tion. That is, all AMBR mechanisms run in parallel, interacting with each other. The
program iterates until the system reaches a resting state. A number of variables are
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Fig. 6.7 Schematized representation of situation IHC. Dashed arrows stand for relations in the
“outcome.” The actual AMBR representation is more complex—it consists of 19 agents and expli-
cates the causal structure (not shown in the figure).

recorded at regular intervals throughout the run. Out of these many variables, the
retrieval index is of special interest. It is computed as the average activation level of
the agents involved in each situation.

In short, the data accumulated at the end of the run are the final mapping con-
structed by the program and a log file of the retrieval indices of all twelve situations
from the LTM.

In the serial condition, the target problem is attached to the activation source
in the same way and the same data were collected. However, the operation of the
program is forcefully modified to separate the processes of access and mapping. To
that end, the run is divided in two steps.

During step one, all mapping mechanisms in AMBR are manually switched off.
Thus, spreading activation is the only mechanism that remains operational. It is
allowed to work until the pattern of activation reaches asymptote. The situation with
the highest retrieval index is then identified. If we hypothesize a “retrieval module,”
this is the situation that it would access from LTM.
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Fig. 6.8 Schematized representation of situation ICF. The actual AMBR representation is more
complex—it consists of 21 agents and explicates the causal structure (not shown in the figure).

After the source analog is picked up in this way, the experiment proceeds with
step two. The mapping mechanism is switched back on again but it is allowed to
work only on the source situation retrieved at step one. This situation is mapped
to the target. Thus, the data at the end of the second run are the final mapping
constructed at step two and two logs of the retrieval indices.

6.3.2 Results and Discussion

In both experimental conditions the model settles in less than 150 time units and pro-
duces consistent mappings. By “consistent” we mean that each element of the target
problem is unambiguously mapped to an element from LTM and that all these cor-
responding elements belong to one and the same base situation. Stated differently,
the mappings are one-to-one and there are no blends between situations.

In the parallel condition, the target problem maps to situation IHC, yielding the
correspondences in<->in, water<->coke, imm-heater<->ice-cube,
high-T<->low-T, made-of<->made-of, etc. Four elements from the source
situation remain unmapped and in particular the agent representing that the water is
hot. This proposition is a good candidate for inference by analogy. Mutatis mutan-
dis, it could bring the conclusion that the coke is cold.
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In the serial condition, situation ICF wins the retrieval stage. This is explained
by the high semantic similarity between its elements and those of the target—both
deal with ice cubes in glasses, cold temperatures, etc. The asymptotic level of the
retrieval index for ICF is about four times greater than that of any other situation. In
particular, situation IHC ends up with only 5 out of 19 agents passing the working
memory threshold.

According to the experimental procedure, situation ICF is then mapped to the
target during the second stage of the run. The correspondences that emerge dur-
ing the latter stage are shown in Table 6.2. The semantic similarity constraint
dominates this run. This is not surprising given the high degree of superficial
similarity between the two situations. There is, however, a serious flaw in the
set of correspondences. The proposition T-of(ice-cube-ICC,low-T-ICC),
which belongs to the initial state of the target, is mapped to the proposition
T-of(ice-cube-ICF,low-T-ICF), which is a consequence in the source.
Therefore, the whole analogy between the target problem and situation ICF could
hardly generate any useful inference.

Table 6.2 Correspondences constructed by the model in the serial condition.

Base situation ICF Target situation ICC

ice-cube ice-cube
fridge coke
glass glass
in (ice-cube, fridge) in (ice-cube, coke)
in (glass, fridge) in (coke, glass)
on (ice-cube, glass) on (glass, saucer)
T-of (fridge, low-T) <unmapped>
T-of (ice-cube, low-T) T-of (ice.cube, low-T)
low-T low-T
made-of (glass, m-glass) made-of (glass, m-glass)
m-glass m-glass
initstate1 initstate
initstate2 <unmapped>
interstate table
endstate endstate
goalstate <unmapped>
follows (initstate1, endst) follows (initstate, endst)
to-reach (initstate1, goalst) <unmapped>
cause (initstate2, in(ic,fr)) <unmapped>
cause (interstate, T-of(ic,lT)) <unmapped>

To summarize, when the mechanisms for access and mapping work together, the
model constructs an analogy that can potentially solve the problem. On the other
hand, when the two mechanisms are separated, the retrieval stage favors a superfi-
cially similar but inappropriate base.
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The presentation so far concentrated on the final set of correspondences pro-
duced by the model. We now turn to the dynamics of the computation as revealed
by the retrieval indices. Figure 6.9 plots the retrieval indices for the two critical LTM
episodes during the first run of the program (i.e. when access and mapping work in
parallel). Figure 6.10 concentrates on the early stage of the first run and compares it
with the second run (i.e. when only the access mechanism is allowed to work). Note
that the two plots are in different scales.
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Fig. 6.9 Plot of retrieval indices versus time for the parallel condition. The “south-west” corner of
the plot is reproduced in Figure 6.10 with threefold magnification.

These plots tell the following story: At the beginning of the parallel run, sev-
eral situations are probed tentatively by bringing a few elements from each into the
working memory. Of this lot, ICF (with the ice cube) looks more promising than
any of its rivals as it has so many objects and relations in common with the target.
Therefore, about half of the agents belonging to situation ICF enter the working
memory and begin trying to establish correspondences between themselves and the
target agents. The active members of the rival situations are doing the same thing,
although with lower intensity—their symbolic processor are slower.

At about 15 time units since the beginning of the simulation, however, situation
IHC (with the immersion heater) rapidly gains strength and eventually overtakes
the original leader. At time 40, it takes the lead and gradually transforms its small
advantage into an uncompromising triumph.

The final victory of situation IHC, despite its lower semantic similarity compared
to situation ICF, is due to the interaction between the mechanisms of access and
mapping in AMBR. More precisely, in this particular case it is the mapping that
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radically changes the course of access. To illustrate the importance of this influence,
Figure 6.10 contrasts the retrieval indices with and without mapping.
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Fig. 6.10 Retrieval indices for situations IHC and ICF with and without mapping influence on
access. The thick lines correspond to the parallel condition and replicate (with threefold magnifi-
cation) the lines from the “south-west” corner of Figure 6.9. The thin lines show “pure” retrieval
indices.

The thin lines in Figure 6.10 show the retrieval indices for the two situations
when mapping mechanisms are suppressed. Thus, they indicate the “pure” retrieval
index of each situation—the value that is due to the access mechanism alone. The
index for situation ICF is much higher than that of IHC and, therefore, ICF is used
as source when the mapping is allowed to run only after the access has finished.

The step-like increases of the plots indicate moments in which an agent (or usu-
ally a tight sub-coalition of two or three agents) passes the working memory thresh-
old (cf. Figure 5.12). This happens, for instance, with situation ICF between time 20
and 30 of the serial condition (the thin dashed line in Figure 6.10). Thus, accessing
a source episode in AMBR is not an all-or-nothing affair. Instead, situations enter
the working memory agent by agent and this process extends far after the beginning
of the mapping. In this way, not only can the access influence the mapping but also
the other way around.

In the interactive condition the mapping mechanism boosts the retrieval index via
what we call a bootstrap cascade. This cascade operates in AMBR in the following
way. First, the access mechanism brings two or three agents of a given situation into
the working memory. If the mapping mechanism then detects that these few agents
can be plausibly mapped to some target elements, it constructs new correspondence
nodes and links in the AMBR network. This creates new paths for the highly ac-
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tive target elements to activate their mates. The latter in turn can then activate their
“coalition partners,” thus bringing a few more agents into the working memory and
so on.

The bootstrap cascade is possible in AMBR due to two important characteristics
of this model. First, situations have decentralized representations which may be
accessed piece by piece. Second, AMBR is based on a parallel cognitive architecture
which provides for concurrent operation of numerous interacting processes. Taken
together, these two factors enable seamless integration of the subprocesses of access
and mapping in analogy-making.

6.4 Order Effect on Analog Access

6.4.1 Simulation Experiment Method

This section presents an experiment testing the prediction made in Section 5.2.4—
the order of presentation of target elements affects the frequency of accessing
episodes from memory. More concretely, source analogs containing elements which
are semantically similar to a given target element are accessed more frequently when
this target element is attached earlier to the input node.

6.4.1.1 Design

The experiment consists of three conditions. The same target problem is presented
to the system in all three conditions. In the control condition all target elements
are attached simultaneously to the input and goal nodes. In the two experimental
conditions the elements are attached in two different (and roughly reverse) orders.
The dependent variables are frequencies of accessing and mapping the episodes in
the long-term memory.

6.4.1.2 Materials

Target situation EHW presented in section 6.2.6 is used as a target problem. Its
verbal description is reproduced below. The 100 variants of the knowledge base
described in section 6.2.1 are used as replications.

Target situation EHW (Egg in Hot Water): There is a teapot and some water
in it. There is an egg in the water. The teapot is made of metal. The color of the egg
is white. The temperature of the water is high.

The goal, if any, is not represented explicitly.
What is the outcome of this state of affairs?
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Note the following details of this description. On one hand, there is some water
whose temperature is high. These elements are similar to the source analogs related
to heating water and in particular to situations WTP (Water in a Teapot on a Plate)
and IHC (Immersion Heater in a Cup). On the other hand, there is an egg whose
color is white. These elements are similar to situation ERW (Egg in Red Water)
described in section 6.1.

6.4.1.3 Procedure

The target problem is run three times on the set of 100 knowledge bases, yielding
a total of 300 runs. In the control condition, all target elements are attached to the
input node at the beginning of the run. The number of times that each of the twelve
episodes in the long-term memory are accessed and mapped is recorded.

In the hot water condition the agents water-EHW, T-of-EHW, and high-T-
EHW are attached to the input node at time zero. The remaining target elements are
attached later according to the schedule shown in the left column of Table 6.3.

In the colored egg condition the agents egg-EHW, color-of-EHW, and white-
EHW are attached to the input node at time zero. The remaining target elements are
attached later according to the schedule shown in the right column of Table 6.3.

Table 6.3 Time schedule for attaching different target elements in the two experimental conditions.

Time hot water condition colored egg condition

0 water egg
high-T white
T-of (water, high-T) color-of (egg, white)

5 teapot teapot
10 metal metal

made-of (teapot, metal) made-of (teapot, metal)
15 in (water, teapot) water
20 egg in (egg, water)
25 in (egg, water) in (water, teapot)
30 white high-T

color-of (egg, white) T-of (water, high-T)
35 endst endst

follows (initst, endst) follows(initst, endst)

6.4.2 Results and Discussion

Figure 6.11 shows bar plots of the frequencies obtained in the two experimental
conditions. The bar plot for the control condition is shown in Figure 6.5.
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Fig. 6.11 Bar plots showing the frequencies of accessing and mapping each long-term memory
episode in the hot water and colored egg conditions, respectively.

Table 6.4 Observed frequencies of accessing base episodes from memory for the two experimental
conditions. The control condition (in parentheses) defines the expected frequencies for the chi-
square test. χ2 = 89.5, df = 7, p < 0.00001.

Condition WTP IHC ERW Other Total

Hot water 58 (37) 16 (11) 5 (35) 21 (17) 100
Color egg 12 (37) 6 (11) 67 (35) 15 (17) 100
Total 70 (74) 22 (22) 72 (70) 36 (34) 100

The data show that each experimental condition differs from the control and
from each other. The difference is very significant according to the chi-square test
(χ2 = 89.5, df = 7, p < 0.00001, Table 6.4). Moreover, the effect is in the pre-
dicted direction — the two base situations about heating water appear much more
frequently in the hot water condition. The reverse pattern holds for the episode about
coloring an egg (ERW).

Thus, order of presentation of the target problem influences the process of ac-
cessing source analogs in AMBR. As the mapping process in the model is intimately
intertwined with access, it is influenced too. Moreover, the direction of influence
is in accord with the well-known primacy effects demonstrated in many studies of
short-term memory (e.g., Postman & Phillips, 1965). Elements that appear earlier
have greater impact than later elements.

AMBR differs from other models of analog retrieval with respect to the primacy
effect (Forbus, Gentner, & Law, 1994; Hummel & Holyoak, 1997). As far as we
can judge from the articles, neither MAC/FAC nor LISA predict such order effect
on analog access. The first stage of MAC/FAC depends on dot products over feature
vectors and, therefore, all target elements necessarily enter simultaneously. Thus the
model must wait until all target elements are available and only then can trigger the
retrieval process.

LISA do present target (or more precisely driver) elements in a temporal order.
Indeed, this is the only way of processing available to LISA due to the limitations of
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the phase set. As argued in section 4.5.1, however, the model uses centralized repre-
sentation of situations. Therefore, episodes are retrieved as units — either all nodes
are flipped from dormant to recipient mode or none of them. In the current version
of LISA this decision is taken probabilistically based on the Luce retrieval index
computed for each episode in LTM (Hummel, personal communication, January
1998). The important point is that the indices are computed after multiple iterations
through the whole driver set. The article does not specify the moment in which the
probabilistic decision about bringing an episode to the working memory is taken
(Hummel & Holyoak, 1997). If we suppose that this happens after the network has
settled, the order of the driver set would have negligible effect on the retrieval in-
dices.





Chapter 7
Possibilities for Future Extensions of AMBR

Throughout this book we have emphasized that analogy-making cannot be decom-
posed into a sequence of independent components. AMBR advocates an interaction-
ist emergent approach and conceptualizes analogy-making in terms of overlapping
subprocesses (Figure 3.4). Still, the current version of the model addresses mainly
the subprocesses of access and mapping. Does this mean that AMBR assumes that
these two subprocesses can be modeled separately from the rest?

The problem lies in the complexity of analogy-making. As we have argued, it
is not an isolated module but emerges out of the general cognitive architecture. We
agree with the closing statement of Robert French’s (2002) review:

Analogy-making is so intimately and so deeply part of human cognition that it is probably
safe to say that any program capable of doing analogy-making in a manner truly comparable
to human beings would stand a very good chance of passing the Turing Test.

For instance, Chalmers, French, and Hofstadter (1992) have argued that analogy
is inseparable from high-level perception. Without perception, the mapping between
the base and the target is in effect contained in latent form in the representations of
the two episodes. As AMBR starts from hand-coded descriptions, it can be criticized
for bypassing the really hard problems of analogy-making. The lack of mechanisms
for high-level perception definitely is a limitation of the model and we plan to in-
clude such mechanisms in a future extension of AMBR. But high-level perception is
obviously rooted in low-level perception. Perception at all levels involves attention,
which in turn depends on motivation, which is culturally grounded, and so forth.

It follows that any model of analogy-making is necessarily incomplete. AMBR
makes no exception. We hope, however, that it is open-ended enough to be able to
grow. This chapter suggests ways for extending the model in two directions: transfer
and perception.

121
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7.1 Possibilities for Transfer

In the current version of AMBR, each run of the model ends in the following way:
One by one the authorized secretaries (i.e. the agents from the target, see Sec-
tion 5.6) select one of the hypotheses registered at them and send it a promotion
incentive. The promoted agents enter the third phase of their life cycle and become
winner hypotheses. All other hypotheses registered at the respective secretaries be-
come losers. In this way, the model makes commitments about the correspondences
between the two episodes. As there are no mechanisms that can advance the process
further, the model stops. All symbolic activity comes to an end. The activation in
the network reaches a steady state.

In a hypothetical future version of AMBR, the mapping between the base and the
target will be used for generating inferences in the target (and possibly the base).
We refer to this process as transfer. It needs to answer at least three questions:

1. Which members of the two descriptions remain unmapped? These are the poten-
tial candidates for transfer. As AMBR uses decentralized representations of situa-
tions, this question cannot be answered by going through some list-like structure
and crossing out mapped entities.

2. Which unmapped elements really merit transferring? This is a very difficult ques-
tion. For example, suppose the target problem is to heat some milk in a teapot.
The base contains water, a teapot, and a hot-plate (among other things). The color
of the teapot in the base is green. The temperature of the plate is high. Neither
proposition has an analog in the target and, therefore, both are candidates for
transfer. Perhaps the milk will get hot if one paints the teapot green?

3. How to carry elements from the one domain to the other? Objects and proposi-
tions in the base cannot be copied literally to the target; they must be “translated.”
The translation process is sometimes called copying with substitution and gener-
ation (Holyoak, Novick, & Melz, 1994).

This list looks like a sequence of steps but it should not be understood in this way.
According to the overall AMBR philosophy, these “steps” overlap in time. Whenever
an element is identified as unmapped (point 1), the evaluation of its relevance and
potential usefulness could begin (point 2). There is no need to wait for the other
unmapped agents. In addition, the potential usefulness of an element depends on
the quality of the inferences that this element could “propose” (point 3). Hence,
in our view the whole process should be modeled by a “wave” similar to the one
outlined in Section 3.2.1.

How could the transfer process be carried out by AMBR mechanisms? Let us
start with the first question above. One possible answer is that the secretaries of the
target are authorized to judge which elements are mapped, whereas the secretaries
of the source are authorized to judge which elements are unmapped.

Hummel & Holyoak (1996, 1997) propose two very useful concepts. In addition
to the conventional target/base distinction, they introduce a driver/recipient distinc-
tion. The driver is the one that has the initiative and “makes things happen.” In
AMBR terminology, it is authorized. This could be the target problem or the source
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episode. Hummel & Holyoak (1997) suggest the following canonical flow of con-
trol: First the target is used as driver during the access stage. Once a source is in
working memory, mapping can be performed in either direction (including succes-
sive switches between the two episodes). After the mapping stage is over, the source
is used to drive inferences and schema induction in the target.

We adopt the driver/recipient terminology and agree with the main idea of the
previous paragraph. However, we propose a modification—the switches between
driver mode and recipient mode should not be done in a way that serializes the
process of analogy-making and cut it into separate stages (marked by interventions
of the human user). Among other things, this implies that it should be possible that
both situations act as drivers simultaneously.

For lack of better terminology, we will denote the situation (or, more precisely,
the elements thereof) that drives the mapping as driver-M. The one that drives the
transfer is driver-T. The two are authorized for different and complementary activi-
ties.

The target problem typically acts as driver-M in AMBR. Its agents access (par-
tially) episodes from the long-term memory, establish correspondences, administer
rating surveys, and promote winners. When a source episode emerges as winner, it
becomes driver-T and its agents become authorized to identify unmapped elements,
judge their potential usefulness for transfer, propose translations in the target, etc.
The two coalitions—driver-M and driver-T—work together, each according to its
authorization. In this way, the transfer subprocess overlaps in time with mapping,
potentially altering the balance in the constraint satisfaction network and affecting
the correspondences that remain to be promoted.

More concretely, the driver-T secretaries could identify whether they are un-
mapped or not by means of a constraint propagation mechanism (e.g., Waltz, 1975).
Commitment in one place (in the form of a winner promotion) propagates to other
places. Consider the example in Figure 7.1.

Figure 7.1 illustrates a fragment of the network at the moment when the driver-M
coalition (to the right) has established several hypotheses with the recipient coali-
tion (in the middle). Note that two hypotheses compete for the agent T-of-w-1.
The secretary of the latter is authorized to promote one of them as winner. Suppose
the hypothesis T-of-w-1<->T-of-w-2 is the winner (due to structural and se-
mantic pressures in the CSN as both propositions involve water). When it is pro-
moted, the rival hypothesis T-of-w-1<->T-of-p-2 becomes a loser. It notifies
the secretary of T-of-p-2 about this. The latter agent belongs to the recipient situ-
ation (in the middle). This same situation, however, is driver-T at the same time. As
such, it checks whether it has at least one non-loser hypothesis on its record. When
T-of-w-1<->T-of-p-2 becomes a loser, the secretary detects that T-of-p-2
is unmapped.

Driver-T secretaries are authorized to trigger the skolemization mechanism (just
as driver-M secretaries are). Thus, the general proposition that the temperature of
heat-sources is high could be used to augment the driver-M situation. This could be
done in the following way: The agent T-of-p-2, having missed the chance to map
to T-of-w-1, now takes the initiative and issues a marker. (Note that it acts as a
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Fig. 7.1 The driver-M coalition (to the right) has established four hypotheses (diamonds) with the
driver-T coalition (in the middle). A general proposition waits in the semantic memory (to the left)
and could be used for skolemization. See text for details.

driver at this moment.) As described in Section 5.3, this marker goes to the parent
concept temperature-of. It intersects there with the marker issued from the
general proposition htsrc-is-hot. The marker intersection leads to a construc-
tion of a new hypothesis agent: T-of-p-2<->htsrc-is-hot. The symbolic
processor of this new agent can carry out the skolemization protocol (Section 5.7)
and augment the description of the “other” situation. As this particular instantiation
of the skolemization mechanism has been triggered by the driver-T situation, the
new Skolem instances will be added to the driver-M situation. (Note that the latter
acts as a recipient with respect to driver-T.)

The skolemization mechanism will re-use the agent high-T-1 in the recipient.
As the concept agent heat-source has received no marker from the same coali-
tion, a new Skolem instance will be created and affiliated to the episode shown to the
right in Figure 7.1. Suppose the name of this new agent is sk-htsrc-1. Finally,
a Skolem proposition will be created. It binds sk-htsrc-1 and high-T-1 as
arguments of a temperature-of relation. Let the name of this latter proposition
is sk-T-of-1. Figure 7.2 depicts the resulting configuration.

The new agents sk-htsrc-1 and sk-T-of-1 affiliate to the driver-M coali-
tion. In this way, the description of the target problem is augmented with a heat
source. The new agents now take the initiative and issue markers. These markers will
create the hypotheses sk-htsrc-1<->plate-2 and sk-T-of-1<->T-of-p
-2. Hence, plate-2 and T-of-p-2 no longer are unmapped. After the rating
mechanism runs its course, the new hypotheses will be promoted as winners. In par-
ticular, the hypothesis sk-T-of-1<->T-of-p-2 will eliminate the general hy-
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high-T

htsrc-is-hot

heat-src

semantic

high-T-2

T-of-p-2

plate-1

water-2

T-of-w-2

driver-T

water-1

T-of-w-1

high-T-1

driver-M

sk-T-of-1

sk-htsrc-1

Fig. 7.2 State of the network after the skolemization mechanism has added two new Skolem agents
to the driver-M coalition introduced in Figure 7.1. The general-hypothesis agent that has carried
out the skolemization is depicted by a white diamond. It will be eliminated when the new Skolem
instances create hypotheses of their own. See text for details.

pothesis T-of-p-2<->htsrc-is-hot that had carried out the skolemization
process.

This example suggests that the existing AMBR mechanisms can be useful not
only for the processes of analog access and mapping but for the transfer process too.
The utility of the mechanisms of rating, marker passing, and skolemization is clear
from the example. The other mechanisms are potentially useful too. The spread-
ing activation is a key mechanism for estimating relevance, and such estimates will
surely be needed for the selection of candidates for transfer. The constraint satisfac-
tion is also useful when there is a need for selecting one option among alternatives.

Considerations of this kind make us believe that the AMBR model is open-ended
enough and its functionality could be extended in the direction of analogical trans-
fer. Moreover, we hope that this could be done without giving up the properties
of the current version. Analog transfer could be done in a dynamic emergent way
over decentralized representations. It could run in parallel with the subprocesses of
mapping and access.

7.2 Possibilities for Perception

This section suggests how AMBR could be extended in the direction of high-level
perception (Kokinov et al., 2007; Nestor & Kokinov, 2004; Petkov & Shahbazyan,
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2007). As argued by Hofstadter (1984, 1995) and Chalmers, French, & Hofstadter
(1992), the process of building representations is a crucial part of analogy-making.
The same authors defend the methodological utility of micro-domains for research
on high-level perception. (See Forbus et al., 1998, for a critique of this view.) Micro-
domains allow the model to focus on building structured representations instead of
dealing with low-level details such as filtering noise from images.

One such micro-domain that could be used in the research on DUAL and AMBR
is the so-called TEXTSCREEN. It is based on an imaginary text processing program.
TEXTSCREEN is deliberately simplified—there is plain text over a limited matrix of
screen positions. There are objects like characters, marked areas, etc. The characters
can be grouped in words, lines, paragraphs, columns, etc. Most of the objects are
directly visible on the screen, where they tend to form regular rectangular patterns.

The objects have attributes such as long and vertical. There are also a num-
ber of relations such as left-of, part-of, aligned-with, etc. Finally, there
are various actions (or commands) to navigate through the text, to insert, delete, or
move objects, and mark portions of text and thus form aggregate units for subse-
quent manipulation.

This material is rich enough to allow various configurations on the screen (see
Figure 7.3). A model that operates in this environment is presented with a situation
which has some defect somewhere on the screen and the task of the system is to
locate the defect and correct it. To that end, the model can use previous situations
(with solutions) as source analogs.

Fig. 7.3 Sample problem
in the TEXTSCREEN micro
domain.

	
  
Obviously, visual perception has much to do with space. Even in a simpli-

fied two-dimensional micro-world like TEXTSCREEN, spatial properties, relations,
and configurations are all important. This characteristic feature of the environment
must be reflected somehow in the cognitive architecture DUAL. The main network
cannot meet this requirement because it lacks spatial organization. Therefore, we
plan to augment the architecture with a large-scale structure having explicit spatial
organization—the visual array (VA; Nestor & Kokinov, 2004).

Just like everything else in DUAL, the visual array consists of agents. The defin-
ing characteristic of the array is that the agents are arranged in a rectangular matrix.
Each agent in the array is associated with a particular position on TEXTSCREEN and
can “see” whether the cell is empty or not. Thus the VA is a mediator between two
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different worlds—the external environment of TEXTSCREEN and the internal repre-
sentations in the main network. The defining principle of TEXTSCREEN is physical
location. On the other hand, the defining principle of the network is interconnec-
tivity. These two principles meet in the visual array—the visual agents have both
physical locations and links to other agents. For instance, each agent is linked to the
agents in the four neighboring cells. It can interact with them, send them symbols
and activation, and so forth.

There are other perceptual agents that are connected to a whole row or column
of the agents in the VA. These agents can detect straight lines, lines with defects,
etc. When they locate an object in their receptive field, they create a new temporary
agent in the main network that represents this external object. Other specialized
perceptual agents combine lines in regions and identify various spatial relations
between them. They build new agents in the network to represent these regions
and relations. Still other agents group things together or parse a complex object
into parts. Each perceptual agent works at its own speed depending on its activation
level. The activation in turns reflects two kinds of influences: bottom-up from the
VA and top-down from the parent concept in the network.

The visual array is a source of activation. It will replace the input node of the
current version of DUAL and AMBR. Instead of receiving a hand-coded descrip-
tion of the scene in the form of agents attached manually to the input list, the model
should be able to construct its own representations. The representation of each scene
would be built agent by agent. Each new agent enters the working memory, sends
activation to its respective concept agent, and emits a marker to trigger the mecha-
nisms for finding correspondences. As the simulation experiments on order effects
have demonstrated (Section 6.4), AMBR is capable to handle target problems that
are presented piecemeal over an extended period of time.





Chapter 8
Conclusion

8.1 Overview of the Book

This book describes AMBR2—a dynamic emergent integrated model of analogi-
cal access and mapping based on decentralized representations of situations. It de-
scribes in detail the knowledge structures and computational mechanisms used in the
model. The behavior of the model is illustrated by many examples, diagrams, and
transcripts of actual runs of the computer implementation of the model. The book
reports the results of various simulation experiments involving more than 1,200 runs
of the program on different target problems. AMBR is compared with a selection of
other models and is discussed in the light of the studies of human analogy-making.

AMBR is an emergent and decentralized model. It consists of a population of
small entities called Dual agents. These agents are the ingredients of the DUAL cog-
nitive architecture that is the foundation of AMBR. They represent all the knowledge
and carry out all the processing in the architecture. There is no central executive that
controls the operation of the system as a whole. Instead, each agent works locally
and performs its simple specific task in close interaction with its immediate neigh-
bors. The global behavior of the model emerges of the coordinated effort of these
asynchronous local activities.

AMBR applies the same approach to the phenomena it is intended to model. The
subprocesses of analogy-making are explained in terms of coordinated mechanisms.
The main intuition behind the research reported here is that there is no “analogy ma-
chine” that does analogies according to some fixed centralized algorithm. Instead,
analogy is an emergent product of the work of general cognitive mechanisms. The
book tries to demonstrate that such approach is feasible. Thus, analog access is
based on the mechanism of spreading activation which serves a range of other pur-
poses in the cognitive architecture. The constraint satisfaction mechanism is used for
finding correspondences in the model but the same mechanism can apply to various
other tasks such as perception and decision making.

AMBR representations of episodes are decentralized. The model does not main-
tain data structures listing the elements that belong to each situation. Instead, each
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situation is represented by a coalition of agents. This allows for greater flexibility of
the representations. New elements can be added when necessary. The skolemization
mechanism can augment the description of a given episode based on general seman-
tic information. In the same time, elements that have been needed in the past and
potentially belong to the description of the episode stay out of the working memory
when they are irrelevant for the problem being solved. Thus the model is capable
to re-represent a situation both by addition and omission of elements (Kokinov &
Petrov, 2000, 2001). Chapter 5 demonstrates this on a concrete example.

The theme of integration is central to AMBR research. The model conceptualizes
the components of analogy-making not as sequential “stages” but as subprocesses
that run in parallel and interact (Figure 3.4). The version reported in this book in-
tegrates the subprocesses of analog access and mapping. A case study reported in
Chapter 6 illustrates an interaction of this kind. Other simulation experiments from
the same chapter also demonstrate various aspects of these interactions. Chapter 7
suggests possibilities for modeling the subprocesses of transfer and perception. It is
argued that they could be added to the current version of the model without forcing
radical reconsideration of the existing mechanisms.

Dynamic computation is a characteristic feature of the architecture DUAL and,
consequently, of the model built on top of it. Each DUAL agent works at its own
speed that varies dynamically as the activation level of the agent vary. Thus, more
relevant agents work faster and contribute more to the overall behavior of the system
compared to less relevant (and hence less active) ones. In addition, the topology of
the AMBR network is constantly changing as new nodes and links are created while
others are removed. This dynamic emergent computation provides for flexibility and
efficiency at the same time (Kokinov, Nikolov, & Petrov, 1996).

8.2 Contributions of This Work

The research reported in this book has made several extensions and improvements
of the AMBR model and DUAL architecture with respect to the earlier specification
(Kokinov, 1994a). In our estimation, the major contributions are:

8.2.1 From AMBR1 (Kokinov, 1994) to AMBR2A (Petrov, 1997)

• By far the most important contribution is the transition from centralized to de-
centralized representation of situations in AMBR. In turn, this led to improve-
ments in the marker passing, structure correspondence, and constraint satisfac-
tion mechanisms. It is also an important factor for the integration of the different
subprocesses of analogy-making in the model. After 1998, the concept of decen-
tralized representations stimulated some very interesting research on blending of
episodes (e.g, Grinberg & Kokinov, 2003; Kokinov & Zareva-Toncheva, 2001;
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Zareva & Kokinov, 2003) and on exploring the interplay between memory and
reasoning (e.g., Kokinov, 2003, 2006; Kokinov & Petrov, 2001).

• Introduction of the energetic analogy and the mechanism of consumptions for
specifying the exact relationship between the activation level of a DUAL agent
and the speed of its symbolic processor (Appendix C; Petrov, 1997; Petrov &
Kokinov, 1999).

• Introduction of the notion of coalitions and the intermediate level of description
of the architecture (the meso-level). The conceptual apparatus of coalitions is
an important tool for developing and communicating the ideas about emergent
computation and decentralized representations.

• Introduction of secretaries for the purpose of incremental construction of the
constraint satisfaction network. The presence of secretaries also prepares the
ground for the rating mechanism in AMBR2B.

• Disclosing the deficiencies of the activation function used in AMBR1 and re-
placing it with a more appropriate one. Detailed mathematical analysis of these
functions.

• Developing, testing, and documenting a portable computer implementation of the
architecture and the model. The program has been tested under two platforms:
Allegro Common Lisp (Windows) and Carnegie Mellon Common Lisp (Unix).

• Enlarging the knowledge base and performing simulation experiments with
AMBR2A.

8.2.2 From AMBR2A to AMBR2B

• Introduction of the mechanisms for rating and promotion. The authorized sec-
retaries in AMBR2B monitor the activation levels of the hypothesis registered at
them. Secretaries promote winners and eliminate losers when appropriate. Thus
the outcome of the mapping process is available within the model itself; there is
no need for an external observer to read out the answer from the activation pat-
tern in the constraint satisfaction network. In addition, loser elimination reduces
the size of the CSN and opens new possibilities for incremental processing as
discussed in Section 5.6.1.3. The rating mechanism also performs ballotages to
prevent implausible blendings and trigger the skolemization mechanism. The life
cycle of hypothesis agents is elaborated.

• Introduction of the skolemization mechanism for the purpose of re-representation
of past episodes accessed from long-term memory. In this way, general semantic
information can be used to augment the descriptions of episodes upon necessity.
To our knowledge, this is the first attempt for re-representation of past episodes
in analogy-making.1 The skolemization mechanism will undoubtedly be useful
for the transfer process too (cf. Chapter 7; Kokinov & Petrov, 2000, 2001).

1 A different form of skolemization is used in the Structure Mapping Engine for the purpose of
positing conjectural entities in the target (Falkenhainer, Forbus, & Gentner, 1989). Section 5.7.4
compares and contrasts the two forms of skolemization.
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• Extending the structure correspondence mechanism with abilities for weak struc-
ture correspondence. It improves the connectivity of the CSN by creating new
links (but not new hypothesis agents). Combined with the differential link weight-
ing adopted in AMBR2B, this improves the structural constraint on analogical
mapping.

• Elaborating the description of the episodes in the knowledge base and addition
of new episodes and concepts. The total number of agents is more than doubled
with respect to AMBR2A. There is richer representation of the causal structure of
each base situation.

• The simulation experiments with AMBR2B reported in this book involve more
than 1,200 runs of the program and show the behavior of the model in detail. The
interaction between analog access and mapping is explored. An experiment on
order effects shows that AMBR2B is sensitive to the order of presentation of the
target elements.

• All new mechanisms are implemented in the computer program. There are also a
number of technical improvements of the old implementation. (For example, the
routines performed by the symbolic processors of AMBR2A agents were inter-
preted. In AMBR2B they are compiled.)

8.3 Suggestions for Future Research

Each end is a new beginning.

As stated repeatedly in this book, AMBR2 is but an intermediate stage in a long-
term research program. There are many ways in which this research can be contin-
ued. Some of them are suggested in this final section.

To begin with, much more experimentation could (and should) be done with
the existing version of the model. There are a number of interesting effects that are
within its scope but have not been demonstrated in rigorous simulation experiments.
For example, AMBR2 could map propositions with different number of arguments,
map an object to a relation, etc. The experiments on priming and context effects
performed by Kokinov (1994a) could also be replicated and extended. The model
should be tested on new kinds of problems in different domains. Of particular inter-
est is whether the model will scale up to larger memory sizes. The sensitivity and
robustness of the model for different values of its various parameters is another issue
that has not been covered here.

Another possibility for research is to design and implement new computational
mechanisms and extend the functionality of AMBR. The subprocess of transfer
seems within closest reach. The mechanisms of constraint propagation, switching
the base as driver, and skolemization from base to target outlined in Chapter 7 pro-
vide a starting point.

A major research direction is to add perceptual capabilities to DUAL and AMBR.
This involves the visual array mentioned in Chapter 7 and the TEXTSCREEN micro-
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domain (Nestor & Kokinov, 2004). The integration of the perceptual mechanisms
with the existing computational machinery is a very challenging and intriguing
topic. Another research direction of comparable complexity and import is to add
learning mechanisms to the architecture.

The research on AMBR involves psychological experimentation too. For instance,
the order effect on access presented in sections 5.2.4 and 6.4 is a prediction of the
model that could be tested empirically.

The closing statement of Turing’s (1950) seminal paper applies here as well:
“We can only see a short distance ahead, but we can see plenty there that needs to
be done.”





Afterword: A Sample of AMBR Research

Georgi Petkov
New Bulgarian University1

After 2005, AMBR research continued in two main directions: the JUDGEMAP
model for judgment on a scale (Kokinov, Hristova, & Petkov, 2004; Petkov, 2005;
Petkov & Kokinov, 2006) and the transfer mechanism (Kiryazov, Petkov, Grinberg,
Kokinov, & Balkenius 2007; Kokinov, Grinberg, Petkov, & Kiryazov, 2008; Petkov,
Kiryazov, Grinberg, & Kokinov, 2007; Petkov & Shahbazyan, 2007; Shahbazyan
& Petkov, 2007). The overall strategy of the research program was motivated by
the hypothesis that analogy-making lies at the core of human cognition. As such,
we expected that the basic mechanisms for analogy-making would support a wide
spectrum of cognitive tasks. We set out to explore the limits of these mechanisms.

The JUDGEMAP model (Petkov, 2005; Petkov & Kokinov, 2006) was the first at-
tempt in this direction. We modeled the process of judgment on a numeric scale,
using the basic mechanisms of DUAL and AMBR. JUDGEMAP successfully ac-
counted for various known phenomena of human judgment, including the contrast
effect (systematic shift of the judgments in the direction opposite to a certain con-
textual element) and the assimilation effect (systematic shift of the judgments to-
ward a contextual element). In addition, the model made a novel prediction that
was successfully validated with empirical data (Kokinov, Hristova, & Petkov, 2004;

1 Boicho Kokinov—the author of DUAL and AMBR—meant to write this Afterword but was pre-
vented by his untimely death. Boicho’s plan was to summarize concisely some of the developments
of the AMBR research program since the 1998 version described in this book. Some key references
to Boicho’s subsequent work are cited in earlier chapters (e.g., Grinberg & Kokinov, 2003; Koki-
nov, 2003, 2006; Kokinov, Hristova, & Petkov, 2004; Kokinov & Petrov, 2000, 2001; Kokinov &
Zareva-Toncheva, 2001; Nestor & Kokinov, 2004; Petrov & Kokinov, 1999; Zareva & Kokinov,
2003). This is only the tip of the iceberg. A full list of Boicho’s publications is available from his
web page at http://www.nbu.bg/cogs/personal/kokinov/.
I am very grateful to Georgi Petkov for rising to the challenge and writing this Afterword in Boi-
cho’s stead. Georgi is another one of Boicho’s doctoral students. At present, he is an Assistant
Professor at the Central and Eastern European Center for Cognitive Science at NBU. He has col-
laborated extensively with Boicho on AMBR and other models, some of which are outlined here.
Thank you, Georgi! – Alex Petrov
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Petkov, 2005). The JUDGEMAP model introduced a method for representing con-
tinuum magnitudes with structural representations in DUAL. It also pioneered the
conceptualization of decision-making as a process of judgment on a two-point scale.

The other major research direction was to continue the development of the mech-
anism of transfer of knowledge from the base to the target. The attempt was to
merge it with the other mechanisms of AMBR according to the main principles of
DUAL and AMBR: Transfer is context-sensitive, emergent, and dynamic. The trans-
fer mechanism is integrated with the other mechanisms and overlaps with them in
time (cf. Figure 3.4). Every agent works autonomously, at a speed proportional to
its activation, and does not wait for the other agents. The overall behavior of the
system emerges from the asynchronous work of the individual agents without any
central controller (Kokinov, Nikolov, & Petrov, 1996).

The RecMap model of high-level vision (Shahbazyan & Petkov, 2007; Petkov &
Shahbazyan, 2007) uses a specific type of transfer mechanism called anticipatory
mechanism (Kiryazov et al., 2007; Kokinov et al., 2008; Petkov et al., 2007). It is
easiest to illustrate this new mechanism on a concrete example. Suppose that a tar-
get situation T is currently being mapped onto a base situation B. The base includes
the proposition Relation-R1-B(arg1-B,arg2-B), represented by a coali-
tion of three instance-agents as illustrated in the left “bubble” in Figure 9.1 (see also
Figure 4.2). Suppose further that mature hypothesis-agents have been established
(cf. Section 5.4.4) that tentatively map all arguments of this predicate onto some in-
stances in the target. In our example, arg1-B and arg2-B have hypothesis-agents
(depicted as grey diamonds) mapping them onto element1-T and element2-T,
respectively. This triggers the creation of a new anticipation-agent that represents
the conjecture that a proposition exists in the target situation that corresponds to
Relation-R1-B in the base. This conjectural proposition is represented by the
agent ANTICIPATION-Relation-R1-T, depicted as a grey rectangle in Fig-
ure 9.1.

arg2-B

arg1-B

Relation-R1-B

Base-B

element1-T

ANTICIPATION-
Relation-R1-T

element2-T

Target-T

Fig. 9.1 Example of the anticipatory mechanism. Suppose all arguments of a relation in some
base situation are mapped to elements from the target situation, but those elements are not inter-
connected with a relation. Then a copy of this relation is created in the target (depicted as a grey
rectangle). This copy is a temporary agent of type :anticipation-agent.
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The new type of anticipation-agents extends the hierarchy of agent types in
AMBR (cf. Figure 3.5). Anticipation-agents are temporary agents, just as hypothesis-
agents are temporary. They are discussed in more detail in Section 9.2.1 below.

The anticipatory mechanism is still under development. The transfer should prop-
agate upward in the class hierarchy. More precisely, in many cases it is desirable to
create in the target a relational instance-agent that does not belong to literally the
same concept class as the corresponding relational instance-agent in the base. Often
these two instances are not from the same class but belong to a common superclass.
Thus, when a copy of a certain relation is created in the target, copies of the rela-
tions above in the class hierarchy should be created as well. This is a topic of further
extensions of the model mechanisms.

These first steps of the development of the model were tested with various simu-
lations: A set of simulations tested the RecMap model for high-level vision (Shah-
bazyan, Petkov, 2007, Petkov, Shahbazyan, 2007). The AMBR model itself, enriched
with the anticipatory mechanism, was deployed in robots and tested in a real en-
vironment (Kiryazov et al., 2007; Kokinov, Grinberg, Petkov, & Kiryazov, 2008;
Petkov, Naydenov, Grinberg, & Kokinov, 2006).

9.1 The JUDGEMAP model

JUDGEMAP is a model of category rating and choice that assumes the structure-
mapping ability is fundamental for human cognition (Petkov, 2005; Petkov & Koki-
nov, 2006). In sharp contrast to all other theories of category rating, JUDGEMAP
conceptualizes the process of judgment as a process of mapping a set of stimuli
onto the set of scale elements. In other words, the participant always needs a whole
set of elements to rate—even if he/she has to evaluate only a single stimulus, he/she
constructs an interrelated set of items that includes the target stimulus, and then
maps the whole set onto the rating scale (Figure 9.2).

JUDGEMAP does not assume the presence of any centralized and static represen-
tation of the response categories. This parallels AMBR’s avoidance of centralized
representations of situations (Section 4.5). This contrasts with other models (e.g.,
Petrov & Anderson, 2005) that assume that each response category is represented
by an anchor, or prototype, or standard, or criterion. In such models one can simply
compare the target stimulus with this standard/prototype/anchor and thereby obtain
a rating. JUDGEMAP, on the other hand, requires the dynamic construction of a com-
parison set. This peculiar characteristic of the current approach makes it unique in
terms of its high context-sensitivity because the formation of the comparison set
(and thus the eventual rating that will be produced on its basis) is dynamic and can
be influenced in various ways (Hristova & Kokinov, 2006; Petkov et al., 2005).

The process of judgment in JUDGEMAP consists of two overlapping and interde-
pendent subprocesses: formation of the comparison set and mapping of the compar-
ison set onto the set of scale elements.



138 Afterword: A Sample of AMBR Research

Comparison set Scale set

7

6

5

4

3

2

1

Fig. 9.2 Illustration of the basic idea of the JUDGEMAP model. A dynamically constructed com-
parison set is mapped onto the set of scale ratings. The mapping preserves the structure of the
ordering relations (depicted as arrows). Hypothesis agents are depicted as grey diamonds.

The comparison set in JUDGEMAP consists of those elements whose represen-
tations happen to be activated in the judge’s working memory on the particular oc-
casion. There are two main sources of comparison set-elements: They may come
from perception (if the judge encounters other elements in the environment) and
from long-term memory (if the target element reminds the judge of some previously
encountered elements). In this respect JUDGEMAP is similar to the EBRW model
(Nosofsky & Palmeri, 1997), the Norm Theory (Kahneman & Miller, 1986), and
the ANCHOR model (Petrov & Anderson, 2005).

The real difference with all other models, however, is in the mapping subprocess.
JUDGEMAP thus builds a bridge between the judgment literature and the analogy-
making literature. The mapping subprocess has to preserve the structure of ordering
relations in the comparison set when finding their corresponding elements in the
scale set (Figure 9.2). This parallels the structure sensitivity of the process of map-
ping in analogy-making. It is thus natural that JUDGEMAP relies heavily on AMBR’s
mapping mechanisms developed for analogy-making. This integration with AMBR
imposed severe constraints on JUDGEMAP—one cannot simply postulate whatever
mechanisms or representations would fit the experimental data on category rating
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and judgment. JUDGEMAP kept the principles of AMBR and preserved its exist-
ing mechanisms. New mechanisms were introduced only when necessary and with
great care. In this way, fitting the data was not a simple process. Rather, the fit arose
naturally out of AMBR’s principles and mechanisms. In sum, the process of judg-
ment was not modeled in isolation, but was integrated with analogy, memory, and in
the future with perception and learning. This integrative approach also allowed for
modeling and explaining the interactions between various cognitive processes.

9.1.1 Main Principles of JUDGEMAP

JUDGEMAP consists of nothing but DUAL agents of various kinds. Relative to
AMBR, it introduces two two novel kinds of agent (comparison relations and corre-
spondence relations), one novel kind of slot (:amount), and a few novel symbolic
procedures.

Comparison relations represent classes of specific relations that have two argu-
ments and express a comparison between these arguments. Examples of comparison-
relations are concepts like longer-than, cheaper-than, better-than,
etc. The class of comparison-relation agents is a subclass of the class of concept-
agents (cf. Fig. 3.5). What sets comparison relations apart from ordinary concept-
agents is that they are equipped with specialized procedural knowledge that allows
them to recognize manifestations of the relation they represent. For example, the
agent longer-than can compare lengths and cheaper-than can compare
prices of relevant items. Thus, comparison-relations act as detectors of the respec-
tive relation in the environment.

Correspondence relations represent specific judgment tasks. For example, if the
task is to judge line lengths on a scale, a correspondence-relation agent repre-
sents the proposition that longer lines correspond to higher ratings. The class of
correspondence-relation agents is a subclass of the class of hypothesis-agents. Thus,
they are temporary and do not participate in long-term memory. They are always ac-
tive during a given judgment episode because they are attached to the GOAL node,
which is a strong source of activation in DUAL (Section 3.1.5). Correspondence-
relation agents issue requests for the construction of hypotheses about correspon-
dences.

For example, suppose the comparison-relation agent longer-than detects that
line-2 is longer than line-1 in the environment and creates a new instance-
agent representing the proposition longer-than(line-2,line-1). The scale
set includes an agent representing the proposition higher-rating(grade-3,
grade-1). Now, the correspondence-relation agent longer=higher-rtg con-
structs a hypothesis that these two propositions correspond. Once this hypothesis
is established, AMBR’s mechanism for top-down structure correspondence (Sec-
tion 5.5.2) creates hypotheses that map line-2 onto grade-3 and line-1 onto
grade-1. Gradually, a constraint satisfaction network (Section 5.4.5) emerges that
connects the comparison set with the scale set as illustrated in Figure 9.2.
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cheese-15:
:type (:instance :object)
:inst-of cheese
:c-coref (price-2 quality-12)

price-2:
:type :instance
:inst-of price
:c-coref cheese-15
:amount 18

quality-12
:type :instance
:inst-of quality
:c-coref cheese-15
:amount 150

Fig. 9.3 Illustration of the :amount slot introduced in JUDGEMAP to represent magnitudes. Note
that the magnitude along each particular dimension is represented by a separate agent. Thus, a
small coalition of agents is needed to represent a stimulus such as a piece of cheese with its price
and quality. Each micro-frame has additional slots (not shown in the figure). All connectionist
aspects are omitted. Compare with Figures 3.6 and 4.1.

The :amount slot is filled with a real number representing the magnitude of a
given instance along a given dimension. Figure 9.3 illustrates magnitude represen-
tations along two dimensions: price and quality.

Many models of judgment and category rating use real numbers to represent stim-
ulus magnitudes. Care must be taken, however, not to ascribe too many capacities
for “mental arithmetic” to the cognitive system. JUDGEMAP does not use the mag-
nitude numbers in any complex calculations. The only purpose of the :amount
slot is to support comparisons between entities. One of the major innovations of
the model is the attempt to represent metric information with a coalition of discrete
agents. This coalition represents a hierarchy of ordering relations (see Fig. 9.4).
For example, if line-10 is 10 units long, line-12 is 12, and line-20 is 20,
then the model can detect that line-20 is longer than line-12 and line-12 is
longer than line-10. The model also constructs second-order (meta) comparisons
between first-order comparisons. An example of such second-order comparison is
that the difference between the lengths of line-20 and line-12 is larger than
the difference between the lengths of line-12 and line-10 (Fig. 9.4).

The model does not rely on the exact metric magnitudes of the stimuli. Instead,
it maintains a representation of the hierarchical structure of ordering relations and
meta-relations. This structure specifies the approximate position of a given stimulus
on a continuous scale relative to the other stimuli. The precision of this approx-
imation should increase with the introduction meta-ordering relations of third and
higher orders. Second-order relations were sufficient to achieve the precision needed
for the judgment tasks in the present simulations.
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meta-longer-than
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line-20 line-10line-12
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Fig. 9.4 JUDGEMAP constructs first-order comparison relations between instances and, recur-
sively, second-order (meta) comparison relations between first-order comparisons.

Thus, JUDGEMAP performs ordinal-scale and interval-scale judgments using the
same set of mechanisms. People make such variegated judgments quite often. For
example, not only can people recognize that Mount Everest is higher than Mont
Blanc and Mont Blanc is higher than Mount Elbert, but they can also recognize that
the difference between Everest and Mont Blanc is larger than that between Mont
Blanc and Mount Elbert. This would require a second-order comparison between
comparisons. If we also need to be able to say that one difference is much larger
than another one, then we would also need third-order comparisons, etc.

The scales for judgment are represented in JUDGEMAP by coalitions of agents
(cf. Section 3.1.4). Figure 9.5 illustrates one such coalition. A separate agent
equipped with an :amount slot stands for each number. Agents representing neigh-
boring numbers are interconnected with associative links stored in :a-link slots.
The scale values have bottom-up connections to a common head agent labeled
7-point-scale in Figure 9.5. The head may have top-down connections to only
a few salient values but not to all values. The head of a 100-point-scale, for example,
may link to the agents standing for 10, 25, 50, 75, and 100. This scheme is analogous
to the decentralized representation of situations in AMBR (Section 4.5.3).

7531

number7-point-scale

6420 8

Fig. 9.5 Example of JUDGEMAP’s scheme for representing a scale by a coalition of agents. The
dashed lines depict bidirectional associative links. The comparison relations are not shown.
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It is sometimes necessary for one concept-agent (e.g., longer-than) to know
all instances of another concept (e.g., line) that are currently active. This is ac-
complished by the exchange of symbolic messages via links of type :argument.
A novel symbolic procedure was defined for this purpose. When a concept-agent
enters WM, it sends argument-related requests via its :argument links. These
requests mean simply, “Send me whatever markers you receive.” (See Section 5.3
for a description of the marker passing mechanism.) When a concept-agent receives
such request, it stores it in its local memory, and each time it receives a marker,
it sends an argument-related answer back to the requesting agent. These answers
contain copies of the markers, but they do not spread further. They are only used by
the symbolic processor of the agent that issued the argument-related request.

9.1.2 Overview of a Typical JUDGEMAP Run

This section illustrates how the various mechanisms in JUDGEMAP work together
to carry out a dynamic emergent computation. The model is shown a sequence of
lines and its task is to rate the length of each line on a seven-point scale.

To designate what task is to be performed, the human operator begins the ses-
sion by attaching the correspondence-relation agent longer=higher-rtg to the
GOAL node and the concept-agent 7-point-scale to the INPUT node. The end
points of the scale are designated as prototypical ratings by creating top-down links
from the scale head to the end points. These links are temporary and their weights
decrease with time. Thus, the initial choice of prototypical ratings matters only for
the first several judgments. It does not influence the statistical results derived from
long stimulus sequencies.

The presentation of the first stimulus is simulated by attaching the instance-agent
line-200 to both GOAL and INPUT nodes.

The spreading-activation mechanism (Sect. 5.2) begins to spread the activation
that emanates from these two special nodes in the architecture. This brings relevant
concepts and instances into WM. The transcript in Figure 9.6 lists the moments at
which various agents pass the WM threshold. Following the standard AMBR marker
passing protocol, each instance-agent emits a marker when it enters the WM. The
first such marker is emitted by line-200 at time 0.22, followed by markers by var-
ious scale elements (labeled as “grades” in the transcript). These markers spread to
the respective concept-agents and to the superclasses of these concepts (cf. Fig. 5.6).
Copies of some of these markers will eventually be sent as argument-related answers
to concept-agents outside the :subc hierarchy of the originating instances. When-
ever a concept-agent receives a marker, it checks whether the originating instance is
its direct instance. If so, a temporary :t-instance link is created connecting the
concept to the instance.2

2 This is a natural entry point for a possible learning mechanism. In future versions of the model,
we plan to design mechanisms for promoting some of these :t-links to permanent status. Pro-
totypes may be formed in this way.
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T=0.00, adding 7-point-scale to WM
T=0.00, adding longer=higher-rtg to WM
T=0.00, adding line-200 to WM
T=0.10, <ARG-REL-REQ longer=higher-rtg> received in 7-point-scale
T=0.20, adding grade-1 to WM
T=0.21, adding grade-7 to WM
T=0.21, adding length-200 to WM
T=0.22, adding grade-0 to WM
T=0.22, adding grade-2 to WM
T=0.22, adding grade-6 to WM
T=0.22, adding grade-8 to WM
T=0.22, adding relation to WM
T=0.22, adding object to WM
T=0.22, <MRK line-200> received in line
T=0.23, <ARG-REL-REQ longer=higher-rtg> received in longer-than
T=0.24, adding number to WM
T=0.24, adding property to WM
T=0.24, <MRK grade-7> received in 7-point-scale
T=0.24, <MRK grade-1> received in 7-point-scale
T=0.24, adding grade-3 to WM
T=0.24, adding grade-5 to WM
T=0.24, <ARG-REL-REQ longer-than> received in line
T=0.25, adding grade-4 to WM

Fig. 9.6 Transcript showing some key events at the beginning of a sample JUDGEMAP run. T=xxx
denotes the time stamp, <MRK xxx> denotes a marker emitted by an instance-agent with the given
name, and <ARG-REL-REQ xxx> denotes an argument-related request emitted by a concept-
agent with the given name. Compare with Figures 5.4 and 5.10.

The processing of the very first stimulus presented to the model needs a special
comment. This stimulus must be judged “in a vacuum”—without anything to com-
pare it with. In this special case, no other lines and lengths can be retrieved from
LTM into WM, and no comparisons would be formed. Probably, this never hap-
pens to people because they have extensive knowledge bases and are always able
to retrieve or construct something similar to the target. One possibility to deal with
this problem in JUDGEMAP is to use some predefined prototypes of the concept
line, such as the line spanning the width of the screen. As a side effect of this
solution, however, these prototypes would bias subsequent judgments in an artifi-
cial and unwanted manner. To avoid this distortion, a different solution was chosen
in the model to handle the initial case in which no rating emerges that maps onto
the target stimulus for a long time. In this (and only this) case, the system creates
one hypothesis without any justifications. This is an exception to the AMBR prin-
ciple that each hypothesis-agent must have at least one justification (Section 5.4.2).
When this condition occurs, JUDGEMAP just takes the currently most active rating
and maps it onto the target. In our sample run, this happens to be grade-4. At
time 249.9 the first stimulus is judged with this rating without any justifications.
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9.1.2.1 Judgment of Subsequent Stimuli

Once the first stimulus has been judged, it is removed from the GOAL list but
not from the working memory. It still receives activation from its concept via the
:t-instance link created earlier. However, the removal from the GOAL list
causes the erasure of the :t-driver tag from the agent’s type slot. The system
is now ready to be presented with the second stimulus. In our example it happens
to be 500 units long. The presentation procedure is the same: a temporary instance-
agent line-500 is attached to the GOAL and INPUT nodes, and a :t-driver
tag is added to its type slot. The new agent emits a marker and activates its coali-
tion partners such as length-500. The transcript in Figure 9.7 lists the key events
of this process.

At time 251.4 the comparison relation higher-length receives from the
concept-agent length an argument-related answer about the marker emitted by
length-500. Now the comparison-relation concept is ready to apply its special-
ized procedural knowledge. At time 252.9 a new instance-agent is created to repre-
sent the comparison that length-500 has a higher :amount than length-200
(cf. Fig. 9.3; the latter agent represents the length of the first line stimulus). In other
words, the comparison-relation concept higher-length has detected a conform-
ing instance in the environment and has represented this fact within the system.

The name of the new agent is length-500>length-200. Like every other
instance-agent, it emits a marker upon entering WM. This marker, wrapped in an
argument-related answer, is received by the comparison-relation longer-than
at time 257.6. As the arguments of longer-than are lines rather than “dis-
embodied” lengths, longer-than identifies the relevant lines by following the
:c-coref links in the agents representing the lengths (cf. Fig. 9.3). These are
instance-agents line-500 and line-200. Thus, longer-than creates the
instance-agent line-500>line-200 to represent the comparison between the
lines. It may seem that having two separate propositions about the same informa-
tion is redundant. The advantages of such separation, however, are apparent when
complex stimuli are judged along multiple dimensions. In the example illustrated in
Figure 9.3, it is important to separate the relation better-cheese from the rela-
tions about the cheese’s properties, better-price and better-quality.

At time 263.0 the correspondence relation longer=higher-rating is no-
tified about the newly created instance line-500>line-200. The correspon-
dence relation creates a justification agent and interconnects it with the latter in-
stance and with the hypothesis-agent line-200<==>grade-4 that was created
during the processing of the first stimulus. The correspondence relation also sends
a message to the new justification agent with instructions what hypotheses to cre-
ate. Three possible hypotheses are consistent with the fact that the new stimulus
(line-500) is longer than the old, and that the old stimulus (line-200) was
rated with grade-4. Thus, line-500 may correspond to grade-5, grade-6
or grade-7. The justification agent creates these hypotheses one at a time, in the
order that reflects the activation levels of each hypothesis’ arguments.
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T=249.9, adding line-500 to WM
T=250.0, <MRK line-500> received in line
T=250.1, adding length-500 to WM
T=250.4, <MRK length-500> received in length
T=250.7, <ARG-REL-ANS line-500> received in longer-than
T=250.9, <MRK line-500> received in object
T=251.4, <ARG-REL-ANS length-500> received in higher-length
T=251.6, <MRK length-500> received in property
T=252.9, adding length-500>length-200 to WM
T=256.3, <MRK length-500>length-200> received in higher-length
T=257.6, <ARG-REL-ANS length-500>length-200> received in

longer-than
T=257.9, <ARG-REL-ANS length-500>length-200> received in

meta-higher-length
T=258.4, <MRK length-500>length-200> received in relation
T=258.7, adding line-500>line-200 to WM
T=261.8, <MRK line-500>line-200> received in longer-than
T=263.0, <ARG-REL-ANS line-500>line-200> received in

longer=higher-rtg
T=263.1, adding JUSTIFICATION{line-500>line-200} to WM
T=263.2, <ARG-REL-ANS line-500>line-200> received in

meta-longer-than
T=263.4, <MRK line-500>line-200> received in relation
T=281.8, adding line-500<==>grade-5 to WM
T=286.2, adding line-500<==>grade-6 to WM
T=292.7, adding line-500<==>grade-7 to WM
T=292.9, line-500 was judged with rating grade-5
WM has 32 agents, act 33.641. Justifications: 1

Fig. 9.7 Continuation of the transcript from Figure 9.6, listing some key events after the presenta-
tion of the second stimulus (line-500). <ARG-REL-ANS xxx> denotes an argument-related
answer carrying a marker emitted by the instance-agent with the given name.

At time 281.8 the first such hypothesis is born: line-500<==>grade-5. This
event triggers AMBR’s rating mechanism (Section 5.6.1). It assigns an initial rating
to the new hypothesis and begins to monitor its performance. At time 286.2 a com-
peting hypothesis arrives: line-500<==>grade-6. However, it is not strong
enough to overtake the first one. The third hypothesis is created at time 292.7, but
by then it is too late to make any difference. At time 292.9 the promotion mecha-
nism proclaims line-500<==>grade-5 as the winner. The winning response
is reported, all loser hypotheses fizzle out, and line-500 is removed from the
GOAL list.

Then the system is presented with the third stimulus: line-1400. Skipping
most details, let us inspect what hypotheses compete with each other at a later mo-
ment and what their support is.

The first hypothesis proposes to judge the stimulus with grade-7. It receives
support from three justifications: line-1400 is longer than line-200, which
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was judged with 4; it is also longer than line-500, which was judged with 5. The
third justification is the second-order comparison that line-1400>line-200 is
meta-longer than line-1400>line-500. The hypothesis also receives activa-
tion from its elements: line-1400 and grade-7. In addition, the hypothesis is
inhibited from its competitors according to the principles governing the constraint-
satisfaction network (Sect. 5.4.5).

The second hypothesis proposes to judge the stimulus with grade-6. It re-
ceives activation only from two justifications—the two first-order justifications of
the other hypothesis. The first hypothesis thus has an extra source of support from
the second-order justification above. This gives it competitive advantage over the
second hypothesis. However, the latter receives more activation from its argument
grade-6 than the first hypothesis receives from grade-7. This happens because
the agent grade-6, which won on the previous trial, is very relevant. Such residual
activations can cause sequential effects in JUDGEMAP in agreement with the human
data. In this particular case, however, the first hypothesis won the competition, al-
though the resolution took a long time because of the interplay of the competing
factors. One more hypothesis—about grade-5—also emerged, but was too weak
to compete with the others. In the end, line-1400 was judged with grade-7.

One might think that, as more and more stimuli are judged, the system will
suffer from a combinatorial explosion due to an ever-growing number of pos-
sible comparisons, justifications, and correspondences. This does not occur in
JUDGEMAP (or indeed in any DUAL model) because of the pruning effect of
the working-memory threshold, the limited speed of the symbolic processors (cf.
Sect. 3.1.3.3), and the temporal cutoff imposed by the rating mechanism. This ro-
bustness is illustrated by the processing of the fourth stimulus on our sample run,
which happened to be line-300 . In fact, at the moment when the hypothesis
line-300<==>grade-4 was promoted, it was supported only by 2 justifica-
tions: line-1400>line-300 and line-500>line-300. Far more reasons
to judge line-300 with grade-4 could in principle be generated by the sys-
tem given enough time, but their creation was cut short by the rating and promotin
mechanisms. As a general rule, these mechanisms do not wait until all moder-
ately relevant hypotheses emerge. Instead, they commit to a response as soon as
the current state is satisfactory enough. The competition during the judgment of
line-300 was brief because the competing hypotheses were too weak. During the
previous judgments, the system had been “focusing on” the larger ratings, whereas
line-300 was relatively short. Because each hypothesis receives activation not
only from its justifications but also from its elements, the small ratings lost the com-
petition. The conflicting information that line-200 was judged with grade-4,
had lost much of its activation due to decay.

Later in the judgment process the old instances fizzle out one after another. Note
that the order of their fizzling out is not strictly determined by the trial order of
their creation. Instead, fizzling out is inversely related to their relevance as opera-
tionalized by their activation levels. If a certain line justifies many winner corre-
spondences, it receives feedback activation from them and thereby survives longer
in WM. If it is inconsistent with the recent winners, it loses support and dies.
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9.1.3 Some Simulations and Comparisons with Behavioral Data

A large set of simulations was performed with the JUDGEMAP model. The results
demonstrated that the correlation between the objective stimulus magnitudes and
the model’s ratings was very close to the respective correlation of human judgments
(Petkov, 2005).

The sequential assimilation effect (Petrov & Anderson, 2005) was simulated. It
arises in JUDGEMAP because of the residual activation of the previous rating. The
overall pattern of activation across the scale values changes dynamically. There are
always some ratings that are more active and some that are less active. Furthermore,
the hypotheses for correspondences receive positive activation from two sources—
their justifications and their elements. The role of the justifications in the competi-
tion between hypotheses is intuitively clear. However, the role of the relevance of
the elements of the hypotheses does not seem essential for the judgment task. It is
a consequence of the basic mechanisms that underlie analogy-making, particularly
the mapping mechanism.

JUDGEMAP also accounts for the contrastive context effects found in the human
data. These effect arises from two main sources in the model. First, the compar-
ison between the stimuli highlights their differences and hence creates a pressure
to differentiate their ratings too. Second, the soft version of the pressure for one-
to-one mappings causes a tendency for the scale labels to be used an almost equal
number of times (in accordance with the frequency principle). This pressure is in-
herited from the AMBR model. The importance of one-to-one mapping is obvious
in analogy-making, but not in a judgment task. Thus, the assumption that the same
mechanism produces the mapping in analogy and judgment explains the emergence
of the frequency principle in judgment.

In contrast to many other models of judgment, JUDGEMAP can handle more com-
plex judgment tasks. For example, it has been applied to the task of judging cheeses
on the basis of two separate properties: price and quality (Petkov, 2005).

The binary task of judging between two alternatives was modeled as a judgment
on a two-point scale There are only two ratings—“accept” and “reject.” All alter-
natives are judged on this scale. The first winner-hypothesis for the rating “accept”
is interpreted as the model’s choice. Various well-known empirical phenomena of
choice were modeled successfully (Petkov & Kokinov, 2006; Petkov, 2006).

Finally, a novel prediction emerged from the model. Because of its context sen-
sitivity, the comparison set is formed on the basis of the recently judged stimuli but
also on the basis of the similarity of these stimuli. Thus, stimulus properties irrele-
vant to the stated judgment task may nevertheless affect the responses. The precise
form of this prediction was formulated, simulated with JUDGEMAP, and verified em-
pirically with various tasks and stimuli (Kokinov et al., 2004; Petkov et al., 2005;
Hristova et al., 2005).
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9.2 The Anticipatory (Transfer) Mechanism

The transfer in AMBR emerges from the work of the anticipatory mechanism (Kirya-
zov et al., 2007; Petkov, Kiryazov, Grinberg, & Kokinov, 2007). This mechanism
was used extensively in the RecMap model of top-down influences on high-level
perception (Petkov & Shahbazyan, 2007; Shahbazyan & Petkov, 2007). RecMap
provided the first testbed for simulation experiments using the new anticipatory
mechanism. In RecMap, the anticipatory mechanism participated in an emergent
process that transferred the solution of a known problem to a target problem dur-
ing analogy-making. Subsequent research with robots provided additional simula-
tions and tests of the anticipation mechanism and the AMBR model more generally.
AMBR was integrated with some programs for object recognition and was imple-
mented in robots (Kiryazov et al., 2007; Kokinov et al., 2008; Petkov et al., 2006).
The full cycle from perception, knowledge representation, retrieval from memory,
analogical mapping, formation of anticipations, verification of anticipations, trans-
fer of the solution of the problem, and action executing was tested with the robots
as outlined in Section 9.3 below.

9.2.1 Description of the Anticipatory Mechanism

In agreement with the main principles of DUAL (cf. Fig. 3.4), the anticipatory mech-
anism runs in parallel with all other mechanisms and potentially interacts with them.
All mechanisms are carried out locally by the individual agents. The overall behav-
ior of the system is a large-scale emergent product of these local interactions.

The basic idea of the anticipatory mechanism was illustrated in Figure 9.1 above.
The creation of an anticipation-agent is triggered when all arguments of a given
relation from a base episode are mapped to elements from the target, but the relation
head in the base has no correspondence in the target. Under these circumstances,
the respective relation is transferred from the base to the target. However, the new
relation is only considered as a tentative anticipation.

In more detail, the anticipation mechanism works as follows: The process is ini-
tiated by instance-agents representing relations from a retrieved base. These agents
are identified by the presence of the tags :relation and :instance in their
type slots. Agents from the target—identified by a :t-driver tag—are not el-
igible. Each eligible agent sends a special symbolic message to all its arguments—
that is, to all instance-agents that are fillers of :c-coref facets of their S-slots (cf
Section 3.1.3.1). In the example in Figure 9.1, Relation-R1-B will send such
messages to its two arguments arg1-B and arg2-B. These messages are sent after
the agent representing the relation enters the WM and after emitting its usual marker
(cf. Section 5.3). The agents representing the arguments receive these messages
and store them in their symbolic buffers. Later during the run, as the mapping pro-
cess unfolds, these arguments will probably be involved in one or more mature hy-
potheses (cf. Section 5.4.3). Whenever a mature hypothesis is registered with these
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agents’ secretaries, they send back to the agent representing the relation an answer
carrying the name of their respective correspondence. For example, arg1-B will
notify Relation-R1-B of its hypothesized correspondence to element1-T
in the target. The relation head checks whether all its arguments have sent such
messages and, if so, issues a node construction request that describes the new
anticipation-agent that is to be made. In due time, this results in the creation of a new
temporary agent with the tags :anticipation and :relation in its type
slot. In our example, the new agent is named ANTICIPATION-Relation-R1-T
(Fig. 9.1). The :inst-of slot of the new agent is inherited from the respective slot
of its originator. However, the arguments of the new relation are the target elements
that correspond to the respective arguments of the original relation in the base.

Of course, it may happen that one and the same argument is involved in several
hypotheses simultaneously. In such cases, several different anticipation-agents will
be formed. Actually, a lot of anticipation-agents emerge during a typical simulation
run and influence the subsequent behavior of the system.

Once created, anticipation-agents behave as all other instance-agents. They emit
markers and may become involved in hypotheses. They participate in the constraint-
satisfaction network. Given that they are temporary agents, they die if their activa-
tion drops below the threshold. In addition, they may be ordered to fizzle by a special
mechanism (see below). The role of the anticipation-agents is to represent relations
that are anticipated by analogy to hold in the environment. But they are tentative
anticipations and the system is always prepared to reject them.

9.2.2 Modeling High-Level Vision: The RecMap Model

RecMap is an object-recognition model based on analogical mapping (Petkov &
Shahbazyan, 2007; Shahbazyan & Petkov, 2007). It relies on four theoretical as-
sumptions (Shahbazyan & Petkov, 2007):

• Objects, scenes, and events are represented by structural descriptions of elements
and their configural relations (Biederman, 1987; Hummel & Biederman, 1992).

• Vision is an inferential process in which limited preattentive information is
mapped to existing knowledge to generate hypotheses about what is present in
the environment

• The role of attention is to bind elements and their relations into integrated repre-
sentations, as well as to verify whether they are present.

• Attention is biased to the aspects of the visual world that are most consistently
supported.

RecMap is an extension of AMBR and introduces three additional mechanisms
to the 1998 version. These extensions are the anticipatory mechanism described
above, an attentional mechanism outlined here, and a mechanism for the creation
and maintenance of hypotheses for recognition. The latter mechanism is beyond our
present scope.
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House Truck Tree Flowerpot;
Candlestick

Lamp

Fig. 9.8 The domain of the RecMap model consists of figures created by simple shapes.

RecMap recognizes objects and scenes in a simple domain consisting of lines,
ovals, rectangles, and other perceptual primitives that are organized in different com-
posite figures (Figure 9.8). Some figures are ambiguous—e.g., the fourth stimulus
above can be interpreted as either a flowerpot or a candlestick; Some figures differ
by a single relation—e.g., the house and truck. Initially, only the primitives—lines
and ovals—are attached to the INPUT, assuming them as preattentive information.
No relations between the primitives are represented. The model’s task is to retrieve
some representations from long-term memory, to create initial mappings, to form
anticipations about various possible relations between items, to verify some of them,
and thus, gradually, to build a structural description of the scene.

We propose that the limited preattentive information is mapped to structural rep-
resentations in memory and that hypotheses for correspondence and anticipations
are formed and as a result of this mapping. The attentional system compares the top-
down anticipations with bottom-up perceptual evidence, and the recognition process
emerges from these comparisons.

The function of the attentional mechanism is twofold: First, attention binds to-
gether the hypotheses for recognition to the respective relation and their arguments.
Because the system has no central executive, various hypotheses for recognition
for each element emerge locally. The anticipatory mechanism creates anticipation-
agents (or “anticipations”) positing tentative relations between the elements. When
such an anticipation is attended, the elements and the anticipated relation are bound
into a single representation. The second function of attention is to verify these antic-
ipations. In the current model version, the verification is accomplished by checking
the winning anticipations against a predefined list of relations and their arguments.

The attentional mechanism is the only centralized mechanism in the model. This
was done deliberately for higher psychological validity. Because focal attention is
needed for the binding process and for the verification of relations, the anticipations
are verified serially in order of their activation level, which is an estimate of their
relevance (cf Section 3.2.3.1).

The attentional mechanism is nothing but a list of all anticipation-agents, ordered
by their activation. Periodically (on every 20 AMBR time cycles) the most active
anticipation is verified. There are three possible outcomes: First, the anticipated
relation may hold in the environment (modeled just by a predefined list). In this case
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the respective anticipation-agent is promoted to a regular instance-agent. Second, a
different spatial or color relation between the same agents may be present. In this
case the respective anticipation-agent fizzles out. Third, the anticipation-agent may
be too complex to be recognized perceptually, given that the anticipatory mechanism
works on all relations, including causal relations, etc. In this case nothing happens
and the anticipation-agent remains in wait for a future resolution of its status.

Once a given anticipation-agent is promoted to a regular instance, it propagates
its promotion by a variant of the structure correspondence mechanism (Section 5.5).
It sends a message to the higher-order relations in which it participates and they in
turn are promoted to regular instances, whereas their competitors fizzle out. Eventu-
ally, even the most abstract anticipatory relations either become instances or fizzle
out.

Thus, the solution to the object-recognition problem emerges gradually via a
process of analogical transfer from relational descriptions stored in long-term mem-
ory. This emergent process involves the creation of a large number of anticipation-
agents, their interconnection in a constraint satisfaction network, promotion of some
of them and fizzling out of others by the attention mechanism, and propagation of
the winners. The set of winning anticipation-agents can be conceptualized as knowl-
edge transferred by analogy.

RecMap accounts for various empirical phenomena, including holistic recogni-
tion, view-dependency of the recognition process, and recognition by a key element
(Petkov & Shahbazyan, 2007; Shahbazyan & Petkov, 2007).

9.3 Simulations with Robots

Last but not least, the AMBR model with the anticipatory mechanism was deployed
in AIBO robots and tested in a real environment (Petkov et al., 2006, 2007; Kiryazov
et al., 2007; Kokinov et al., 2008).

We used the Sony AIBO robot (ERS-7) platform with implemented software
for recognizing simple shapes (cylinders, cubes, etc.), their colors, and the spatial
relation among them. The goal of the robot always was to search for its bone-toy,
which was hidden behind one of the objects.

The robot must solve several tasks in order to find the toy. First, it creates a pre-
liminary representation of the scene, consisting only of the shapes of the objects.
Second, the robot retrieves from memory structural descriptions of various similar
situations. Third, according to the RecMap model, the robot generates anticipations
about possible spatial relations among the objects. Note, however, that all processes
in AMBR run in parallel and thus much more complex anticipation emerge along-
side the simple anticipations about spatial relations among objects. For example,
the robot may anticipate by analogy with some previous situation that the toy can
be found by moving to the cylinder. Note also that although there is a huge number
of possible relations between any two items, the model generates anticipations only
about relations that had been true in past situations that seem analogical to the cur-
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rent situation. Fourth, the robot sequentially verifies some of the anticipations and
reject other ones via the attention mechanism. Fifth, it establishes the most appropri-
ate analogy and removes the inconsistent anticipations. Sixth, it transfers knowledge
about what movements would cause the bone to be found. Finally, the robot actually
performs the planned movements.

All these steps were successfully performed by the robot in the respective domain
(Petkov et al., 2006, 2007; Kiryazov et al., 2007; Kokinov et al., 2008).

Research on DUAL, AMBR, and the various models built on their basis continues
at the New Bulgarian University and elsewhere.



Appendix A
Full Representation of a Situation

This appendix presents the unabridged representation of one of the twelve episodes
in the current long-term memory. It is taken directly from the Lisp sources that load
the knowledge base of AMBR.

The file consists of defagent macros. Each macro defines an agent and fills its
slots. The overall syntax is:

(defagent agent-name agent-type
[documentation-string]
{G-slot-definition}*
{S-slot-definition}*

)

Most slot fillers are references to other agents. Each reference is also a link and
has a label and a weight (see Section 3.1.3.1). When no explicit weight is given, it
defaults to 1.0.

;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: AMBR -*-

;;; FILE: AMBR/kb/episodic/b_WTP.lsp
;;; VERSION: 3.0.0 ; see AMBR/KB/VERSION.LSP
;;; PURPOSE: Base situation WTP -- ’Water in a Teapot on a hot Plate.’
;;; DEPENDS-ON: AMBR, AMBR/kb/semantic/*.lsp
;;; PROGRAMMER: Alexander Alexandrov Petrov (apetrov@cogs.nbu.acad.bg)
;;; VARIANTS: none
;;; CREATED: 30-05-98 [3.0.0] Elaboration of SIT-WTP from old LTM.LSP.
;;; UPDATED: 18-06-98 Removed IS-GOAL and RESULT propositns. Wght adjstmt
;;; CAUSE consequents are propositions now, not states.
;;; T-OF-WTP-W1 and T-OF-WTP-W2 coalesced together.
;;; UPDATED: ...

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;; SITUATION W T P ;;;;;;;;
;;;;;;;; Water in a Teapot on a Plate ;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package "AMBR")
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;;;;;;;;; Base situation WTP ;;;;;;;;;;;
;;;;
;;;; There is some water in a teapot on a hot-plate.
;;;; The plate is hot. The teapot is made of metal
;;;; and its color is black.
;;;;
;;;; The goal is to heat the water.
;;;;
;;;; The result is that the teapot becomes hot because
;;;; it is on the hot plate. In turn, this causes the
;;;; water to become hot because it is in the teapot.
;;;;
;;;;;;;;;
;;;; Related situations:
;;;; + GP -- Glass on a hot Plate breaks.
;;;; + IHC -- Imm.Heater in a Cup heats water.
;;;; + ...
;;;; * HM1 -- How to Heat Milk in a Teapot?
;;;; * ...

;;;;;;; Situation-agent
;;

(defagent sit-WTP instance-agent
"Water in a Teapot on a hot Plate."
:type (:instance :situation)
:inst-of (situation 0.1)
:a-link ((hplate-WTP 0.5)

(high-T-WTP 0.5)
(T-of-WTP-w 1.0) )

)

;;;;;;; Participating objects
;;
;; water-WTP : (inst-of water)
;; tpot-WTP : (inst-of teapot)
;; hplate-WTP : (inst-of hot-plate)
;;

(defagent water-WTP instance-agent
:type (:instance :object)
:modality (:init :goal)
:situation (sit-WTP 0.2)
:inst-of water
:c-coref (((in-WTP . :slot1) 0.3)

((T-of-WTP-w . :slot1) 1.0)
((goalst-WTP . :slot3) 0.2)
((interst-WTP . :slot3) 0.1) )

:a-link (initst-WTP-1 0.1)
)

(defagent tpot-WTP instance-agent
:type (:instance :object)
:modality :init
:situation (sit-WTP 0.2)
:inst-of teapot
:c-coref (((in-WTP . :slot2) 0.25)

((on-WTP . :slot2) 0.25)
((T-of-WTP-t . :slot1) 0.25)
((made-of-WTP . :slot1) 0.10)
((color-of-WTP . :slot1) 0.10)
((initst-WTP-2 . :slot3) 0.10) )

:a-link (initst-WTP-1 0.1)
:slot1

:type :relation
:inst-of (teapot . :slot2)
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:c-coref (made-of-WTP 0.2)
:a-link (mmetal-WTP 0.2)

:slot2
:type :relation
:inst-of (teapot . :slot2)
:c-coref (color-of-WTP 0.1)
:a-link (black-WTP 0.1)

)

(defagent hplate-WTP instance-agent
:type (:instance :object)
:modality :init
:situation (sit-WTP 0.3)
:inst-of hot-plate
:c-coref (((T-of-WTP-p . :slot1) 0.75)

((on-WTP . :slot1) 0.25) )
:a-link ((high-T-WTP 0.5)

(initst-WTP-1 0.1) )
)

;;;;;;; Initial relations
;;
;; in-WTP : (in water-WTP tpot-WTP)
;; on-WTP : (on hplate-WTP tpot-WTP)
;; T-of-WTP-p : (temperature-of hplate-WTP high-T-WTP)
;; made-of-WTP : (made-of tpot-WTP mmetal-WTP)
;; color-of-WTP : (color-of tpot-WTP black-WTP)
;;

(defagent in-WTP instance-agent
"(in water-WTP tpot-WTP)"
:type (:instance :relation)
:modality :init
:situation (sit-WTP 0.2)
:inst-of in
:c-coref (((initst-WTP-1 . :slot4) 0.2)

((interst-WTP . :slot2) 0.1) )
:slot1

:type :aspect
:inst-of (in . :slot1)
:c-coref water-WTP

:slot2
:type :aspect
:inst-of (in . :slot2)
:c-coref tpot-WTP

)

(defagent on-WTP instance-agent
"(on hplate-WTP tpot-WTP)"
:type (:instance :relation)
:modality :init
:situation (sit-WTP 0.2)
:inst-of on
:c-coref (((initst-WTP-1 . :slot3) 0.2)

((initst-WTP-2 . :slot2) 0.1) )
:a-link (T-of-WTP-t 0.1)
:slot1

:type :aspect
:inst-of (on . :slot1)
:c-coref hplate-WTP

:slot2
:type :aspect
:inst-of (on . :slot2)
:c-coref tpot-WTP

)
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(defagent T-of-WTP-p instance-agent
"(temperature-of hplate-WTP high-T-WTP)"
:type (:instance :relation)
:modality :init
:situation (sit-WTP 0.2)
:inst-of temperature-of
:c-coref (((initst-WTP-1 . :slot1) 0.3)

((initst-WTP-2 . :slot1) 0.1) )
:a-link ((T-of-WTP-t 0.1)

(T-of-WTP-w 0.1)
(cause-WTP-i 0.1) )

:slot1
:type :aspect
:inst-of (temperature-of . :slot1)
:c-coref hplate-WTP

:slot2
:type :aspect
:inst-of (temperature-of . :slot2)
:c-coref high-T-WTP

)

(defagent high-T-WTP instance-agent
:type (:instance :object)
:modality (:init :goal :result)
:situation (sit-WTP 0.3)
:inst-of high-temp
:c-coref (((T-of-WTP-p . :slot2) 0.5)

((T-of-WTP-t . :slot2) 0.2)
((T-of-WTP-w . :slot2) 0.5)
((initst-WTP-1 . :slot2) 0.1)
((goalst-WTP . :slot2) 0.1) )

:a-link (hplate-WTP 0.3)
)

(defagent made-of-WTP instance-agent
"(made-of tpot-WTP mmetal-WTP)"
:type (:instance :relation)
:modality :init
:situation (sit-WTP 0.2)
:inst-of made-of
:c-coref (tpot-WTP . :slot1)
:a-link (T-of-WTP-t 0.3)
:slot1

:type :aspect
:inst-of (made-of . :slot1)
:c-coref tpot-WTP

:slot2
:type :aspect
:inst-of (made-of . :slot2)
:c-coref mmetal-WTP

)

(defagent mmetal-WTP instance-agent
:type (:instance :object)
:modality :init
:situation (sit-WTP 0.2)
:inst-of material-metal
:c-coref (made-of-WTP . :slot2)
:a-link (tpot-WTP 1.0)

)

(defagent color-of-WTP instance-agent
"(color-of tpot-WTP black-WTP)"
:type (:instance :relation)
:modality :init
:situation (sit-WTP 0.2)
:inst-of color-of
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:c-coref (tpot-WTP . :slot2)
:slot1

:type :aspect
:inst-of (color-of . :slot1)
:c-coref tpot-WTP

:slot2
:type :aspect
:inst-of (color-of . :slot2)
:c-coref black-WTP

)

(defagent black-WTP instance-agent
:type (:instance :object)
:modality :init
:situation (sit-WTP 0.2)
:inst-of black
:c-coref (color-of-WTP . :slot2)
:a-link (tpot-WTP 1.0)

)

;;;;;;; Initial states
;;
;; initst-WTP-1 -to-reach-> goalst-WTP
;; initst-WTP-1 -follows-> endst-WTP
;; initst-WTP-2 --cause--> interst-WTP
;;
;; initst-WTP-1 : (init-state T-of-WTP-p high-T-WTP on-WTP in-WTP)
;; initst-WTP-2 : (init-state T-of-WTP-p on-WTP tpot-WTP)
;;

(defagent initst-WTP-1 instance-agent
"initst-WTP-1 -to-reach-> goalst-WTP"
:type (:instance :situation)
:modality :init
:situation (sit-WTP 0.2)
:inst-of init-state
:c-coref ((to-reach-WTP . :slot1)

(follows-WTP . :slot1) )
:a-link ((goalst-WTP 1.0)

(initst-WTP-2 0.2)
(water-WTP 0.2)
(tpot-WTP 0.2)
(hplate-WTP 0.2) )

:slot1
:type :relation
:inst-of (init-state . :slot2)
:c-coref T-of-WTP-p

:slot2
:type :aspect
:inst-of (init-state . :slot1)
:c-coref high-T-WTP

:slot3
:type :relation
:inst-of (init-state . :slot2)
:c-coref on-WTP

:slot4
:type :relation
:inst-of (init-state . :slot2)
:c-coref in-WTP

)

(defagent initst-WTP-2 instance-agent
"initst-WTP-2 --cause--> interst-WTP"
:type (:instance :situation)
:modality :init
:situation (sit-WTP 0.2)
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:inst-of init-state
:c-coref (cause-WTP-i . :slot1)
:a-link ((interst-WTP 1.0)

(initst-WTP-1 0.3)
(hplate-WTP 0.3) )

:slot1
:type :relation
:inst-of (init-state . :slot2)
:c-coref T-of-WTP-p

:slot2
:type :relation
:inst-of (init-state . :slot2)
:c-coref on-WTP

:slot3
:type :aspect
:inst-of (init-state . :slot1)
:c-coref tpot-WTP

)

;;;;;;; Goal state
;;
;; goalst-WTP <-to-reach- initst-WTP-1
;; goalst-WTP : (goal-state T-of-WTP-w high-T-WTP water-WTP)
;;
;; T-of-WTP-w : (temperature-of water-WTP high-T-WTP)
;; to-reach-WTP : (to-reach initst-WTP-1 goalst-WTP)
;;

(defagent T-of-WTP-w instance-agent
"(temperature-of water-WTP high-T-WTP)"
:type (:instance :relation)
:modality (:GOAL :intend-true

:RESULT :true )
:situation (sit-WTP 0.3)
:inst-of temperature-of
:c-coref (((goalst-WTP . :slot1) 0.2)

((endst-WTP . :slot2) 0.2)
((cause-WTP-e . :slot2) 0.2) )

:a-link ((T-of-WTP-p 0.1)
(T-of-WTP-t 0.1)
(hplate-WTP 0.1) )

:slot1
:type :aspect
:inst-of (temperature-of . :slot1)
:c-coref water-WTP

:slot2
:type :aspect
:inst-of (temperature-of . :slot2)
:c-coref high-T-WTP

)

(defagent goalst-WTP instance-agent
"goalst-WTP <-to-reach- initst-WTP-1"
:type (:instance :situation)
:modality :goal
:situation (sit-WTP 0.2)
:inst-of goal-state
:c-coref (to-reach-WTP . :slot2)
:a-link ((initst-WTP-1 1.0)

(endst-WTP 0.5) )
:slot1

:type :relation
:inst-of (goal-state . :slot2)
:c-coref T-of-WTP-w
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:slot2
:type :aspect
:inst-of (goal-state . :slot1)
:c-coref high-T-WTP

:slot3
:type :aspect
:inst-of (goal-state . :slot1)
:c-coref water-WTP

)

(defagent to-reach-WTP instance-agent
"(to-reach initst-WTP-1 goalst-WTP)"
:type (:instance :relation)
:modality :goal
:situation (sit-WTP 0.2)
:inst-of to-reach
:a-link ((follows-WTP 0.5)

(cause-WTP-i 0.1)
(cause-WTP-e 0.2) )

:slot1
:type :aspect
:inst-of (to-reach . :slot1)
:c-coref initst-WTP-1

:slot2
:type :aspect
:inst-of (to-reach . :slot2)
:c-coref goalst-WTP

)

;;;;;;; Intermediary state
;;
;; interst-WTP <-cause-- initst-WTP-2
;; interst-WTP --cause-> endst-WTP
;; interst-WTP : (inter-state T-of-WTP-t in-WTP water-WTP)
;;
;; T-of-WTP-t : (temperature-of tpot-WTP high-T-WTP)
;; cause-WTP-i : (cause initst-WTP-2 T-of-WTP-t)
;;

(defagent T-of-WTP-t instance-agent
"(temperature-of tpot-WTP high-T-WTP)"
:type (:instance :relation)
:modality :result
:situation (sit-WTP 0.2)
:inst-of temperature-of
:c-coref (((cause-WTP-i . :slot2) 0.5)

((interst-WTP . :slot1) 0.2)
((endst-WTP . :slot1) 0.2) )

:a-link ((T-of-WTP-p 0.3)
(T-of-WTP-w 0.3)
(hplate-WTP 0.1) )

:slot1
:type :aspect
:inst-of (temperature-of . :slot1)
:c-coref tpot-WTP

:slot2
:type :aspect
:inst-of (temperature-of . :slot2)
:c-coref high-T-WTP

)

(defagent interst-WTP instance-agent
"interst-WTP <-cause- initst-WTP-2"
:type (:instance :situation)
:modality :result
:situation (sit-WTP 0.2)
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:inst-of inter-state
:c-coref (cause-WTP-e . :slot1)
:a-link ((endst-WTP 0.6)

(initst-WTP-2 0.4) )
:slot1

:type :relation
:inst-of (inter-state . :slot2)
:c-coref T-of-WTP-t

:slot2
:type :relation
:inst-of (inter-state . :slot2)
:c-coref in-WTP

:slot3
:type :aspect
:inst-of (inter-state . :slot1)
:c-coref water-WTP

)

(defagent cause-WTP-i instance-agent
"(cause initst-WTP-2 T-of-WTP-t)"
:type (:instance :relation)
:modality :result
:situation (sit-WTP 0.2)
:inst-of cause
:a-link ((interst-WTP 1.0)

(cause-WTP-e 0.5)
(follows-WTP 0.3)
(to-reach-WTP 0.2) )

:slot1
:type :aspect
:inst-of (cause . :slot1)
:c-coref initst-WTP-2

:slot2
:type :aspect
:inst-of (cause . :slot2)
:c-coref T-of-WTP-t

)

;;;;;;; End state
;;
;; endst-WTP <-follows- initst-WTP-1
;; endst-WTP : (end-state T-of-WTP-t T-of-WTP-w)
;;
;; follows-WTP : (follows initst-WTP-1 endst-WTP)
;; cause-WTP-e : (cause interst-WTP T-of-WTP-w)
;;

(defagent endst-WTP instance-agent
"endst-WTP <-follows- initst-WTP-1"
:type (:instance :situation)
:modality :result
:situation (sit-WTP 0.2)
:inst-of end-state
:c-coref (follows-WTP . :slot2)
:a-link ((interst-WTP 0.1)

(goalst-WTP 0.2) )
:slot1

:type :relation
:inst-of (end-state . :slot2)
:c-coref (T-of-WTP-t 0.5)

:slot2
:type :relation
:inst-of (end-state . :slot2)
:c-coref T-of-WTP-w

)
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(defagent follows-WTP instance-agent
"(follows initst-WTP-1 endst-WTP)"
:type (:instance :relation)
:modality :result
:situation (sit-WTP 0.2)
:inst-of follows
:a-link ((to-reach-WTP 0.5)

(cause-WTP-i 0.2) )
:slot1

:type :aspect
:inst-of (follows . :slot1)
:c-coref initst-WTP-1

:slot2
:type :aspect
:inst-of (follows . :slot2)
:c-coref endst-WTP

)

(defagent cause-WTP-e instance-agent
"(cause interst-WTP T-of-WTP-w)"
:type (:instance :relation)
:modality :result
:situation (sit-WTP 0.2)
:inst-of cause
:a-link ((endst-WTP 0.5)

(follows-WTP 0.3)
(cause-WTP-i 0.2)
(to-reach-WTP 0.1) )

:slot1
:type :aspect
:inst-of (cause . :slot1)
:c-coref interst-WTP

:slot2
:type :aspect
:inst-of (cause . :slot2)
:c-coref T-of-WTP-w

)

;;;;;; ---- Sanity check ---- ;;;;;;
;;
(check-for-unresolved-references)

;;;;;;;;;;;; --- Appendix --- ;;;;;;;;;;
;;
;; The information below is not used by the model.
;; It is for interface purposes only.

(defcoalition sit-WTP
"Water in a Teapot on a hot Plate."
:head sit-WTP ; 23 agents
:members (sit-WTP

water-WTP tpot-WTP hplate-WTP
in-WTP on-WTP
T-of-WTP-p high-T-WTP
T-of-WTP-t T-of-WTP-w
made-of-WTP mmetal-WTP
color-of-WTP black-WTP
initst-WTP-1 initst-WTP-2 interst-WTP
goalst-WTP endst-WTP
to-reach-WTP follows-WTP
cause-WTP-i cause-WTP-e
))
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(GENKB-template
:herald "Base sit.WTP -- Water in a Teapot on a hot Plate, ver.3.0.0."
:templates ’(

(water (:instance (water-WTP 2))
(:a-link (T-of-WTP-w 0.1)) )

(teapot (:instance (tpot-WTP 3)) )
(hot-plate (:instance (hplate-WTP 5))

(:a-link (T-of-WTP-p 0.2)) )
(temperature-of (:instance (T-of-WTP-w 3) (T-of-WTP-p 3))

(:a-link (high-T-WTP 0.1)) )
(high-temp (:instance (high-T-WTP 5))

(:a-link (hplate-WTP 0.2)) )
(in (:instance (in-WTP 1)) )
(on (:instance (on-WTP 1)) )
(made-of (:instance (made-of-WTP 1)) )
(material-metal (:instance (mmetal-WTP 1)) )
(color-of (:instance (color-of-WTP 1)) )
(black (:instance (black-WTP 1)) )

))

;;;;;;;; Propositional representaion
;;
;; sit-WTP : (inst-of sit-WTP situation)
;;
;; black-WTP : (inst-of black-WTP black)
;; cause-WTP-i : (cause initst-WTP-2 T-of-WTP-t)
;; cause-WTP-e : (cause interst-WTP T-of-WTP-w)
;; color-of-WTP : (color-of tpot-WTP black-WTP)
;; endst-WTP : (end-state T-of-WTP-t T-of-WTP-w)
;; follows-WTP : (follows initst-WTP-1 endst-WTP)
;; goalst-WTP : (goal-state T-of-WTP-w high-T-WTP water-WTP)
;; high-T-WTP : (inst-of high-T-WTP high-temp)
;; hplate-WTP : (inst-of hplate-WTP hot-plate)
;; in-WTP : (in water-WTP tpot-WTP)
;; initst-WTP-1 : (init-state T-of-WTP-p high-T-WTP on-WTP in-WTP)
;; initst-WTP-2 : (init-state T-of-WTP-p on-WTP tpot-WTP)
;; interst-WTP : (inter-state T-of-WTP-t in-WTP water-WTP)
;; made-of-WTP : (made-of tpot-WTP mmetal-WTP)
;; mmetal-WTP : (inst-of mmetal-WTP material-metal)
;; on-WTP : (on tpot-WTP hplate-WTP)
;; T-of-WTP-p : (temperature-of hplate-WTP high-T-WTP)
;; T-of-WTP-t : (temperature-of tpot-WTP high-T-WTP)
;; T-of-WTP-w : (temperature-of water-WTP high-T-WTP)
;; to-reach-WTP : (to-reach initst-WTP-1 goalst-WTP)
;; tpot-WTP : (inst-of tpot-WTP teapot)
;; water-WTP : (inst-of water-WTP water)

;;;;;; End of file AMBR/KB/EPISODIC/B_WTP.LSP
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Propositional Descriptions of All Situations

This appendix presents simplified propositional descriptions of all situations in-
volved in the simulation experiments reported in the book. They appear in the order
they are introduced in Chapter 6: 12 base episodes + 10 target problems.

Note that these are simplified representations only! The actual AMBR represen-
tations are much more complex. Generally, each line below corresponds to a whole
agent with several slots. See Appendix A for an actual representation and compare
it with the first group below.

;;;;;; Base sit. WTP (Water in a Teapot on a Plate)

sit-WTP : (inst-of sit-WTP situation)
black-WTP : (inst-of black-WTP black)
cause-WTP-i : (cause initst-WTP-2 T-of-WTP-t)
cause-WTP-e : (cause interst-WTP T-of-WTP-w)
color-of-WTP : (color-of tpot-WTP black-WTP)
endst-WTP : (end-state T-of-WTP-t T-of-WTP-w)
follows-WTP : (follows initst-WTP-1 endst-WTP)
goalst-WTP : (goal-state T-of-WTP-w high-T-WTP water-WTP)
high-T-WTP : (inst-of high-T-WTP high-temp)
hplate-WTP : (inst-of hplate-WTP hot-plate)
in-WTP : (in water-WTP tpot-WTP)
initst-WTP-1 : (init-state T-of-WTP-p high-T-WTP on-WTP in-WTP)
initst-WTP-2 : (init-state T-of-WTP-p on-WTP tpot-WTP)
interst-WTP : (inter-state T-of-WTP-t in-WTP water-WTP)
made-of-WTP : (made-of tpot-WTP mmetal-WTP)
mmetal-WTP : (inst-of mmetal-WTP material-metal)
on-WTP : (on tpot-WTP hplate-WTP)
T-of-WTP-p : (temperature-of hplate-WTP high-T-WTP)
T-of-WTP-t : (temperature-of tpot-WTP high-T-WTP)
T-of-WTP-w : (temperature-of water-WTP high-T-WTP)
to-reach-WTP : (to-reach initst-WTP-1 goalst-WTP)
tpot-WTP : (inst-of tpot-WTP teapot)
water-WTP : (inst-of water-WTP water)

;;;;;; Base sit. BF (Bowl on a Fire burns out)

sit-BF : (inst-of sit-BF situation)
bowl-BF : (inst-of bowl-BF bowl)
cause-BF-b : (cause initst-BF-2 is-burnt-BF)
cause-BF-d : (cause interst-BF is-dissip-BF)
endst-BF : (end-state is-burnt-BF is-dissip-BF)
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fire-BF : (inst-of fire-BF fire)
follows-BF : (follows initst-BF-1 endst-BF)
goalst-BF : (goal-state T-of-BF-w high-T-BF water-BF)
high-T-BF : (inst-of high-T-BF high-temp)
in-BF : (in water-BF bowl-BF)
initst-BF-1 : (init-state T-of-BF-f high-T-BF on-BF in-BF)
initst-BF-2 : (init-state T-of-BF-f made-of-BF mwood-BF on-BF)
interst-BF : (inter-state is-burnt-BF in-BF bowl-BF)
is-burnt-BF : (is-burnt-out bowl-BF)
is-dissip-BF : (is-dissipated water-BF)
made-of-BF : (made-of bowl-BF mwood-BF)
mwood-BF : (inst-of mwood-BF material-wood)
on-BF : (on fire-BF bowl-BF)
T-of-BF-f : (temperature-of fire-BF high-T-BF)
T-of-BF-w : (temperature-of water-BF high-T-BF)
to-reach-BF : (to-reach initst-BF-1 goalst-BF)
water-BF : (inst-of water-BF water)

;;;;;; Base sit. GP (Glass on a hot Plate breaks)

sit-GP : (inst-of sit-GP situation)
cause-GP-b : (cause initst-GP-2 is-broken-GP)
cause-GP-d : (cause interst-GP is-dissip-GP)
endst-GP : (end-state is-broken-GP is-dissip-GP)
follows-GP : (follows initst-GP-1 endst-GP)
glass-GP : (inst-of glass-GP glass)
goalst-GP : (goal-state T-of-GP-w high-T-GP water-GP)
high-T-GP : (inst-of high-T-GP high-temp)
hplate-GP : (inst-of hplate-GP hot-plate)
in-GP : (in water-GP glass-GP)
initst-GP-1 : (init-state T-of-GP-p high-T-GP on-GP in-GP)
initst-GP-2 : (init-state T-of-GP-p made-of-GP mglass-GP on-GP)
interst-GP : (inter-state is-broken-GP in-GP glass-GP)
is-broken-GP : (is-broken glass-GP)
is-dissip-GP : (is-dissipated water-GP)
made-of-GP : (made-of glass-GP mglass-GP)
mglass-GP : (inst-of mglass-GP material-glass)
on-GP : (on hplate-GP glass-GP)
T-of-GP-p : (temperature-of hplate-GP high-T-GP)
T-of-GP-w : (temperature-of water-GP high-T-GP)
to-reach-GP : (to-reach initst-GP-1 goalst-GP)
water-GP : (inst-of water-GP water)

;;;;;; Base sit. IHC (Immersion Heater in a Cup with water)

sit-IHC : (inst-of sit-IHC situation)
cause-IHC : (cause initst-IHC T-of-IHC-w)
cup-IHC : (inst-of cup-IHC cup)
endst-IHC : (end-state T-of-IHC-w)
follows-IHC : (follows initst-IHC endst-IHC)
goalst-IHC : (goal-state T-of-IHC-w high-T-IHC water-IHC)
high-T-IHC : (inst-of high-T-IHC high-temp)
imm-htr-IHC : (inst-of imm-htr-IHC immersion-heater)
in-IHC-iw : (in imm-htr-IHC water-IHC)
in-IHC-wc : (in water-IHC cup-IHC)
initst-IHC : (init-state T-of-IHC-ih high-T-IHC in-IHC-iw imm-htr-IHC)
made-of-IHC : (made-of cup-IHC mchina-IHC)
mchina-IHC : (inst-of mchina-IHC material-china)
on-IHC : (on saucer-IHC cup-IHC)
saucer-IHC : (inst-of saucer-IHC saucer)
T-of-IHC-ih : (temperature-of imm-htr-IHC high-T-IHC)
T-of-IHC-w : (temperature-of water-IHC high-T-IHC)
to-reach-IHC : (to-reach initst-IHC goalst-IHC)
water-IHC : (inst-of water-IHC water)
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;;;;;; Base sit. FDO (Food on a Dish in an Oven)

sit-FDO : (inst-of sit-FDO situation)
cause-FDO-i : (cause initst-FDO-2 in-FDO-fo)
cause-FDO-t : (cause interst-FDO T-of-FDO-f)
dish-FDO : (inst-of dish-FDO baking-dish)
endst-FDO : (end-state T-of-FDO-f)
follows-FDO : (follows initst-FDO-1 endst-FDO)
food-FDO : (inst-of food-FDO food)
goalst-FDO : (goal-state T-of-FDO-f high-T-FDO food-FDO)
high-T-FDO : (inst-of high-T-FDO high-temp)
initst-FDO-1 : (init-state T-of-FDO-o high-T-FDO on-FDO in-FDO-do)
initst-FDO-2 : (init-state on-FDO in-FDO-do)
interst-FDO : (inter-state in-FDO-fo T-of-FDO-o oven-FDO)
in-FDO-fo : (in food-FDO oven-FDO)
in-FDO-do : (in dish-FDO oven-FDO)
on-FDO : (on dish-FDO food-FDO)
oven-FDO : (inst-of oven-FDO oven)
rectang-FDO : (inst-of rectang-FDO rectang-shape)
shape-of-FDO : (shape-of dish-FDO rectang-FDO)
T-of-FDO-o : (temperature-of oven-FDO high-T-FDO)
T-of-FDO-f : (temperature-of food-FDO high-T-FDO)
to-reach-FDO : (to-reach initst-FDO-1 goalst-FDO)

;;;;;; Base sit. MTF (Milk in a Teapot in a Fridge)

sit-MTF : (inst-of sit-MTF situation)
cause-MTF-i : (cause initst-MTF-2 in-MTF-mf)
cause-MTF-t : (cause interst-MTF T-of-MTF-m)
color-of-MTF : (color-of tpot-MTF green-MTF)
endst-MTF : (end-state T-of-MTF-m)
follows-MTF : (follows initst-MTF-1 endst-MTF)
fridge-MTF : (inst-of fridge-MTF fridge)
goalst-MTF : (goal-state T-of-MTF-m low-T-MTF milk-MTF)
green-MTF : (inst-of green-MTF green)
initst-MTF-1 : (init-state T-of-MTF-f low-T-MTF in-MTF-mt in-MTF-tf)
initst-MTF-2 : (init-state in-MTF-mt in-MTF-tf)
interst-MTF : (inter-state in-MTF-mf T-of-MTF-f fridge-MTF)
in-MTF-mf : (in milk-MTF fridge-MTF)
in-MTF-mt : (in milk-MTF tpot-MTF)
in-MTF-tf : (in tpot-MTF fridge-MTF)
low-T-MTF : (inst-of low-T-MTF low-temp)
milk-MTF : (inst-of milk-MTF milk)
T-of-MTF-f : (temperature-of fridge-MTF low-T-MTF)
T-of-MTF-m : (temperature-of milk-MTF low-T-MTF)
to-reach-MTF : (to-reach initst-MTF-1 goalst-MTF)
tpot-MTF : (inst-of tpot-MTF teapot)

;;;;;; Base sit. ICF (Ice Cube in a Fridge)

sit-ICF : (inst-of sit-ICF situation)
cause-ICF-i : (cause initst-ICF-2 in-ICF-if)
cause-ICF-t : (cause interst-ICF T-of-ICF-i)
endst-ICF : (end-state T-of-ICF-i)
follows-ICF : (follows initst-ICF-1 endst-ICF)
fridge-ICF : (inst-of fridge-ICF fridge)
glass-ICF : (inst-of glass-ICF glass)
goalst-ICF : (goal-state T-of-ICF-i low-T-ICF ice-cube-ICF)
ice-cube-ICF : (inst-of ice-cube-ICF ice-cube)
initst-ICF-1 : (init-state T-of-ICF-f low-T-ICF on-ICF-ig in-ICF-gf)
initst-ICF-2 : (init-state on-ICF-ig in-ICF-gf)
interst-ICF : (inter-state in-ICF-if T-of-ICF-f fridge-ICF)
in-ICF-if : (in ice-cube-ICF fridge-ICF)
on-ICF-ig : (on ice-cube-ICF glass-ICF)
in-ICF-gf : (in glass-ICF fridge-ICF)
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low-T-ICF : (inst-of low-T-ICF low-temp)
made-of-ICF : (made-of glass-ICF mglass-ICF)
mglass-ICF : (inst-of mglass-ICF material-glass)
T-of-ICF-f : (temperature-of fridge-ICF low-T-ICF)
T-of-ICF-i : (temperature-of ice-cube-ICF low-T-ICF)
to-reach-ICF : (to-reach initst-ICF-1 goalst-ICF)

;;;;;; Base sit. BPF (Butter on a Plate in a Fridge)

sit-BPF : (inst-of sit-BPF situation)
butter-BPF : (inst-of butter-BPF butter)
cause-BPF-i : (cause initst-BPF-2 in-BPF-bf)
cause-BPF-t : (cause interst-BPF T-of-BPF-b)
circular-BPF : (inst-of circular-BPF circular-shape)
endst-BPF : (end-state T-of-BPF-b)
follows-BPF : (follows initst-BPF-1 endst-BPF)
fridge-BPF : (inst-of fridge-BPF fridge)
goalst-BPF : (goal-state T-of-BPF-b low-T-BPF butter-BPF)
initst-BPF-1 : (init-state T-of-BPF-f low-T-BPF on-BPF in-BPF-pf)
initst-BPF-2 : (init-state on-BPF in-BPF-pf)
interst-BPF : (inter-state in-BPF-bf T-of-BPF-f fridge-BPF)
in-BPF-bf : (in butter-BPF fridge-BPF)
in-BPF-pf : (in plate-BPF fridge-BPF)
low-T-BPF : (inst-of low-T-BPF low-temp)
made-of-BPF : (made-of plate-BPF mchina-BPF)
mchina-BPF : (inst-of mchina-BPF material-china)
on-BPF : (on plate-BPF butter-BPF)
plate-BPF : (inst-of plate-BPF plate)
shape-of-BPF : (shape-of plate-BPF circular-BPF)
T-of-BPF-f : (temperature-of fridge-BPF low-T-BPF)
T-of-BPF-b : (temperature-of butter-BPF low-T-BPF) ; goal
to-reach-BPF : (to-reach initst-BPF-1 goalst-BPF)

;;;;;; Base sit STC (Sugar in Tea in a Cup)

sit-STC : (inst-of sit-STC situation)
cause-STC : (cause initst-STC taste-of-STC-t)
cup-STC : (inst-of cup-STC cup)
endst-STC : (end-state taste-of-STC-t)
follows-STC : (follows initst-STC endst-STC)
goalst-STC : (goal-state taste-of-STC-t sweet-STC tea-STC)
in-STC-st : (in sugar-STC tea-STC)
in-STC-tc : (in tea-STC cup-STC)
initst-STC : (init-state taste-of-STC-s sweet-STC in-STC-st sugar-STC)
on-STC : (on saucer-STC cup-STC)
saucer-STC : (inst-of saucer-STC saucer)
sugar-STC : (inst-of sugar-STC sugar)
sweet-STC : (inst-of sweet-STC sweet-taste)
taste-of-STC-s : (taste-of sugar-STC sweet-STC)
taste-of-STC-t : (taste-of tea-STC sweet-STC)
tea-STC : (inst-of tea-STC tea)
to-reach-STC : (to-reach initst-STC goalst-STC)

;;;;;; Base sit. SFF (Salt in Food in a Fridge)

sit-SFF : (inst-of sit-SFF situation)
cause-SFF-i : (cause initst-SFF-2 in-SFF-ff)
cause-SFF-tmp : (cause interst-SFF T-of-SFF-fd)
cause-SFF-tst : (cause initst-SFF-3 taste-of-SFF-f)
endst-SFF : (end-state T-of-SFF-fd taste-of-SFF-f)
follows-SFF : (follows initst-SFF-1 endst-SFF)
food-SFF : (inst-of food-SFF food)
fridge-SFF : (inst-of fridge-SFF fridge)
goalst-SFF : (goal-state T-of-SFF-fd low-T-SFF food-SFF)
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in-SFF-ff : (in food-SFF fridge-SFF)
in-SFF-pf : (in plate-SFF fridge-SFF)
in-SFF-sf : (in salt-SFF food-SFF)
initst-SFF-1 : (init-state in-SFF-ff T-of-SFF-fr fridge

in-SFF-sf T-of-SFF-fr)
initst-SFF-2 : (init-state on-SFF in-SFF-pf)
initst-SFF-3 : (init-state in-SFF-sf taste-of-SFF-s salty-SFF)
interst-SFF : (inter-state in-SFF-ff T-of-SFF-fr fridge-SFF)
low-T-SFF : (inst-of low-T-SFF low-temp)
on-SFF : (on plate-SFF food-SFF)
plate-SFF : (inst-of plate-SFF plate)
salt-SFF : (inst-of salt-SFF salt)
salty-SFF : (inst-of salty-SFF salt-taste)
taste-of-SFF-s : (taste-of salt-SFF salty-SFF)
taste-of-SFF-f : (taste-of food-SFF salty-SFF)
T-of-SFF-fd : (temperature-of food-SFF low-T-SFF)
T-of-SFF-fr : (temperature-of fridge-SFF low-T-SFF)
to-reach-SFF : (to-reach initst-SFF-1 goalst-SFF)

;;;;;; Base sit. ERW (Egg in Red Water)

sit-ERW : (inst-of sit-ERW situation)
cause-ERW : (cause initst-ERW color-of-ERW-e)
color-of-ERW-e : (color-of egg-ERW red-ERW)
color-of-ERW-w : (color-of water-ERW red-ERW)
egg-ERW : (inst-of egg-ERW egg)
endst-ERW : (end-state color-of-ERW-e)
follows-ERW : (follows initst-ERW endst-ERW)
goalst-ERW : (goal-state color-of-ERW-e egg-ERW)
in-ERW-ew : (in egg-ERW water-ERW)
in-ERW-wt : (in water-ERW tpot-ERW)
initst-ERW : (init-state color-of-ERW-w red-ERW egg-ERW in-ERW-ew)
made-of-ERW : (made-of tpot-ERW mmetal-ERW)
mmetal-ERW : (inst-of mmetal-ERW material-metal)
red-ERW : (inst-of red-ERW red)
to-reach-ERW : (to-reach initst-ERW goalst-ERW)
tpot-ERW : (inst-of tpot-ERW teapot)
water-ERW : (inst-of water-ERW water)

;;;;;; Base sit. GWB (Glass in a Wooden Box)

sit-GWB : (inst-of sit-GWB situation)
box-GWB : (inst-of box-GWB box)
cause-GWB : (cause in-GWB protects-GWB)
endst-GWB : (end-state protects-GWB)
follows-GWB : (follows initst-GWB endst-GWB)
glass-GWB : (inst-of glass-GWB glass)
goalst-GWB : (goal-state protects-GWB)
in-GWB : (in glass-GWB box-GWB)
initst-GWB : (init-state glass-GWB box-GWB in-GWB)
made-of-GWB-b : (made-of box-GWB mwood-GWB)
made-of-GWB-g : (made-of glass-GWB mglass-GWB)
mglass-GWB : (inst-of mglass-GWB material-glass)
mwood-GWB : (inst-of mwood-GWB material-wood)
protects-GWB : (protects box-GWB glass-GWB)
to-reach-GWB : (to-reach initst-GWB goalst-GWB)

;;;;;; Target problem HM1 (Heating Milk, variant 1)

sit-HM1 : (inst-of sit-HM1 situation)
goalst-HM1 : (goal-state T-of-HM1 high-T-HM1)
in-HM1 : (in milk-HM1 tpot-HM1)
initst-HM1 : (init-state milk-HM1 tpot-HM1 in-HM1 made-of-HM1)
high-T-HM1 : (inst-of high-T-HM1 high-temp)
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made-of-HM1 : (made-of tpot-HM1 mmetal-HM1)
mmetal-HM1 : (inst-of mmetal-HM1 material-metal)
milk-HM1 : (inst-of milk-HM1 milk)
T-of-HM1 : (temperature-of milk-HM1 high-T-HM1)
to-reach-HM1 : (to-reach initst-HM1 goalst-HM1)
tpot-HM1 : (inst-of tpot-HM1 teapot)

;;;;;; Target problem HM2 (Heating Milk, variant 2)

sit-HM2 : (inst-of sit-HM2 situation)
endst-HM2 : (end-state ???)
follows-HM2 : (follows initst-HM2 endst-HM2)
high-T-HM2 : (inst-of high-T-HM2 high-temp)
hplate-HM2 : (inst-of hplate-HM2 hot-plate)
in-HM2 : (in milk-HM2 tpot-HM2)
initst-HM2 : (init-state hplate-HM2 on-HM2 in-HM2 T-of-HM2)
milk-HM2 : (inst-of milk-HM2 milk)
on-HM2 : (on hplate-HM2 tpot-HM2)
T-of-HM2 : (temperature-of hplate-HM2 high-T-HM2)
tpot-HM2 : (inst-of tpot-HM2 teapot)

;;;;;; Target problem CM1 (Cooling Milk, variant 1)

sit-CM1 : (inst-of sit-CM1 situation)
goalst-CM1 : (goal-state T-of-CM1 low-T-CM1)
in-CM1 : (in milk-CM1 tpot-CM1)
initst-CM1 : (init-state milk-CM1 tpot-CM1 in-CM1 made-of-CM1)
low-T-CM1 : (inst-of low-T-CM1 low-temp)
made-of-CM1 : (made-of tpot-CM1 mmetal-CM1)
milk-CM1 : (inst-of milk-CM1 milk)
mmetal-CM1 : (inst-of mmetal-CM1 material-metal)
T-of-CM1 : (temperature-of milk-CM1 low-T-CM1)
to-reach-CM1 : (to-reach initst-CM1 goalst-CM1)
tpot-CM1 : (inst-of tpot-CM1 teapot)

;;;;;; Target problem CM2 (Cooling Milk, variant 2)

sit-CM2 : (inst-of sit-CM2 situation)
black-CM2 : (inst-of black-CM2 black)
color-of-CM2 : (color-of tpot-CM2 black-CM2)
goalst-CM2 : (goal-state ???)
to-reach-CM2 : (to-reach initst-CM2 goalst-CM2)
fridge-CM2 : (inst-of fridge-CM2 fridge)
in-CM2-mt : (in milk-CM2 tpot-CM2)
in-CM2-tf : (in tpot-CM2 fridge-CM2)
initst-CM2 : (init-state fridge-CM2 in-CM2-tf in-CM2-mt T-of-CM2)
low-T-CM2 : (inst-of low-T-CM2 low-temp)
milk-CM2 : (inst-of milk-CM2 milk)
T-of-CM2 : (temperature-of fridge-CM2 low-T-CM2)
tpot-CM2 : (inst-of tpot-CM2 teapot)

;;;;;; Target problem WB1 (Water in a wooden Bowl)

sit-WB1 : (inst-of sit-WB1 situation)
bowl-WB1 : (inst-of bowl-WB1 bowl)
goalst-WB1 : (goal-state T-of-WB1 high-T-WB1)
in-WB1 : (in water-WB1 bowl-WB1)
initst-WB1 : (init-state water-WB1 bowl-WB1 in-WB1 made-of-WB1)
high-T-WB1 : (inst-of high-T-WB1 high-temp)
made-of-WB1 : (made-of bowl-WB1 mwood-WB1)
mwood-WB1 : (inst-of mwood-WB1 material-wood)
T-of-WB1 : (temperature-of water-WB1 high-T-WB1)
to-reach-WB1 : (to-reach initst-WB1 goalst-WB1)
water-WB1 : (inst-of water-WB1 water)
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;;;;;; Target problem WG1 (Water in a Glass)

sit-WG1 : (inst-of sit-WG1 situation)
color-of-WG1 : (color-of glass-WG1 white-WG1)
glass-WG1 : (inst-of glass-WG1 glass)
goalst-WG1 : (goal-state T-of-WG1 high-T-WG1)
in-WG1 : (in water-WG1 glass-WG1)
initst-WG1 : (init-state water-WG1 glass-WG1 in-WG1 made-of-WG1)
high-T-WG1 : (inst-of high-T-WG1 high-temp)
made-of-WG1 : (made-of glass-WG1 mglass-WG1)
mglass-WG1 : (inst-of mglass-WG1 material-glass)
T-of-WG1 : (temperature-of water-WG1 high-T-WG1)
to-reach-WG1 : (to-reach initst-WG1 goalst-WG1)
water-WG1 : (inst-of water-WG1 water)
white-WG1 : (inst-of white-WG1 white)

;;;;;; Target problem SF1 (Salty Food, variant 1)

sit-SF1 : (inst-of sit-SF1 situation)
food-SF1 : (inst-of food-SF1 food)
goalst-SF1 : (goal-state taste-of-SF1 salty-SF1)
initst-SF1 : (init-state food-SF1 plate-SF1 on-SF1 made-of-SF1)
made-of-SF1 : (made-of plate-SF1 mchina-SF1)
mchina-SF1 : (inst-of mchina-SF1 material-china)
on-SF1 : (on plate-SF1 food-SF1)
plate-SF1 : (inst-of plate-SF1 plate)
salty-SF1 : (inst-of salty-SF1 salt-taste)
taste-of-SF1 : (taste-of food-SF1 salty-SF1)
to-reach-SF1 : (to-reach initst-SF1 goalst-SF1)

;;;;;; Target problem SF2 (Salty Food, variant 2)

sit-SF2 : (inst-of sit-SF2 situation)
endst-SF2 : (end-state ???)
follows-SF2 : (follows initst-SF2 endst-SF2)
food-SF2 : (inst-of food-SF2 food)
in-SF2 : (in salt-SF2 food-SF2)
initst-SF2 : (init-state salt-SF2 food-SF2 plate-SF2)
on-SF2 : (on plate-SF2 food-SF2)
plate-SF2 : (inst-of plate-SF2 plate)
salt-SF2 : (inst-of salt-SF2 salt)

;;;;;; Target problem EHW (Egg in Hot Water)

sit-EHW : (inst-of sit-EHW situation)
color-of-EHW : (color-of egg-EHW white-EHW)
egg-EHW : (inst-of egg-EHW egg)
endst-EHW : (end-state ???)
follows-EHW : (follows initst-EHW endst-EHW)
in-EHW-ew : (in egg-EHW water-EHW)
in-EHW-wt : (in water-EHW tpot-EHW)
initst-EHW : (init-state egg-EHW in-EHW-ew in-EHW-wt T-of-EHW)
high-T-EHW : (inst-of high-T-EHW high-temp)
made-of-EHW : (made-of tpot-EHW mmetal-EHW)
mmetal-EHW : (inst-of mmetal-EHW material-metal)
T-of-EHW : (temperature-of water-EHW high-T-EHW)
tpot-EHW : (inst-of tpot-EHW teapot)
water-EHW : (inst-of water-EHW water)
white-EHW : (inst-of white-EHW white)
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;;;;;; Target problem ICC (Ice Cube in Coke)

sit-ICC : (inst-of sit-ICC situation)
follows-ICC : (follows initst-ICC endst-ICC)
coke-ICC : (inst-of coke-ICC coke)
endst-ICC : (end-state ???)
glass-ICC : (inst-of glass-ICC glass)
ice-cube-ICC : (inst-of ice-cube-ICC ice-cube)
in-ICC-ic : (in ice-cube-ICC coke-ICC)
in-ICC-cg : (in coke-ICC glass-ICC)
initst-ICC : (init-state ice-cube-ICC in-ICC-ic in-ICC-cg T-of-ICC)
low-T-ICC : (inst-of low-T-ICC low-temp)
made-of-ICC : (made-of glass-ICC mglass-ICC)
mglass-ICC : (inst-of mglass-ICC material-glass)
on-ICC : (on table-ICC glass-ICC)
table-ICC : (inst-of table-ICC table)
T-of-ICC : (temperature-of ice-cube-ICC low-T-ICC)



Appendix C
The Energetic Analogy: Activation as Power

This appendix describes the exact relationship between symbolic speed and con-
nectionist activation in DUAL (Section 3.1.3.3; Petrov, 1997; Petrov & Kokinov,
1999). This relationship rests on the following energetic analogy: the manipulation
of symbols can be conceptualized as work and the connectionist activation as power.
Doing work requires energy, which is supplied to the symbolic processor by the con-
nectionist aspect of the agent. The energy is calculated by integrating the power over
time. The speed of the symbolic computation depends on the power (i.e., the activa-
tion level). The same amount of work is completed rapidly when there is plenty of
power, slowly when power is scarce, and not at all if it is lacking completely.

The symbolic processing in the architecture can be categorized into segments
of increasing complexity (Petrov, 1997). (i) A symbolic operation is the smallest
unit of symbol manipulation. The operations are simple, atomic, and deterministic.
They are the elementary instructions of the symbolic processor. (ii) A symbolic step
is a sequence of operations performed by a single agent without intervening sym-
bolic interactions with other agents. (iii) A rigid symbolic process is a fixed, a priori
specified sequence of steps performed by a single agent. There may be interven-
ing interactions. (iv) An emergent symbolic process is distributed over a coalition
of interacting agents. It does not have any complete a priori specification. Rather,
the course of computation is determined dynamically by the interplay of various
pressures (Kokinov et al., 1996).

Each symbolic operation is characterized by some consumption C. This is a real
number specifying the amount of symbolic work embedded in the operation. Dif-
ferent operations may have different consumptions. They are free parameters of
the particular model and may be fixed on theoretical grounds or estimated from
empirical data. This scheme offers considerably more freedom than the alternative
proposals that typically assume equal consumption for all operations.

If a fine-grained analysis at the level of individual operations is not warranted,
consumptions may be specified at the level of symbolic steps. The latter are often
more convenient due to their larger grain size. A symbolic step is performed by
a single agent and by definition there is no symbolic exchange with other agents
during the step. Thus as far as the inter-agent communication is concerned, steps
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can be treated as units, disregarding the constituent operations. What matters is the
final outcome (in the form of a message send to another agent) and the timing of its
appearance.

Each symbolic processor acts as a machine that transforms connectionist energy
into symbolic work. Not all energy, however, is converted into useful work. There is
some overhead for covering the internal needs of the processor itself. The efficiency
coefficient η is defined as the ratio of the useful work A to the total energy input E:
η = A/E. This coefficient characterizes the symbolic processor. Different proces-
sors can have different efficiencies. In a cognitive model, for instance, processors
performing highly automated tasks have η close to 1 while processors performing
novel tasks have low efficiency. The efficiency can even be adjusted dynamically by
some kind of learning — the basic rule is that it increases with practice.

Suppose a symbolic processor starts working on some operation (or step) at time
t0. The amount of energy needed for the operation can be calculated in advance —
it is E =C/η , where C is the consumption of the operation. This energy must be
provided by the connectionist aspect of the agent. This takes time, as the rate of
supply is limited. The energy function that describes the accumulation of energy in
time is defined by the integral:

E(t) =
∫ t

t0
a(τ)dτ (C.1)

where a(τ) is the activation level. Activation levels in DUAL must be above some
positive threshold in order for the symbolic processor to work. If a(τ) drops be-
low the threshold even for a moment, the symbolic processing is aborted and all
intermediate results are lost. Because a(τ) is always positive, E(t) is an increas-
ing function and thus has an inverse E−1. The inverse function expresses the time
needed to produce a given amount of energy.

Putting all pieces together, the exact moment in which the symbolic operation is
completed is:

t = t0 +E−1(C/η) (C.2)

The outcome of the operation becomes available at that moment. It may be a
message sent to another agent or a modification of the internal micro-frame. Then
the processor moves to the next operation as prescribed by the algorithm and the
whole cycle repeats.

When the symbolic processor is idle, all energy produced by the connectionist
aspect of the agent goes unused. It cannot be accumulated. In other words, it is not
allowed to amass energy “on store” and then expend it all at once, thereby attaining
very high peak power.

The energetic analogy offers the following advantages: (i) It provides for variable-
speed symbolic computation and all the associated benefits. Indeed, it is clear that
the specification described in this section implies that the more active agents run
more rapidly. (ii) The activation levels can change dynamically and all changes
have instant effect. (iii) The architecture DUAL has a well-defined notion of time.
It is measured on a continuous scale and frames the occurrence of all symbolic
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events. (iv) The speed of each DUAL agent is defined independently of that of the
other agents. Thus the architecture can be run without any modification on parallel
hardware. (v) The relationship between symbolic speed and connectionist activa-
tion is specified without recourse to any particular implementation. (vi) Symbolic
processes can be finely parameterized and the parameters have straightforward in-
terpretation — consumptions and efficiency coefficients.

C.1 S-Lisp: A Language for Variable-Speed Symbolic
Computations

The DUAL architecture has been fully implemented. All programs are written Com-
mon Lisp (Steele, 1990) with CLOS (Keene, 1989). An extension of Lisp called
S-Lisp (“suspendable” Lisp) has been developed (Petrov, 1997) for the purposes
of the variable-speed symbolic computations. A rudimentary compiler translates
S-Lisp programs into plain Lisp. This section outlines the main features of the lan-
guage and the principles of its implementation.

S-Lisp is an extension of Common Lisp. Its main difference from plain Lisp is
that it supports four additional special operators: s-progn, s-eval, s-values,
and suspended-value-bind. They are suspendable analogs to the respective
Lisp operators. S-Lisp also supports most (but not all) plain Lisp primitives such as
progn, if, let, and setq. The language also supports function calls and recur-
sion, which in turn allows for loops.

S-progn establishes a sequence of symbolic steps to be executed at variable
speed by the processor of some DUAL agent called a host. The complementary
suspension primitive, s-eval, signals that a given S-Lisp form is suspendable and
announces the amount of energy needed for it. The two suspension primitives go
together. s-eval may appear only within the lexical scope of an s-progn; it is
an error elsewhere. Conversely, s-progn is like an ordinary progn in all respects
except the treatment of s-eval and the other suspension primitives. A very simple
S-Lisp program is illustrated below:

(s-progn host
(s-eval 0.5 (prepare x))
(when (s-eval 0.2 (check x))

(s-eval 2.5 (work-on x)))
(s-eval 0.1 (cleanup)) )

The remaining two suspension primitives, s-values and suspended-value
-bind, are used to export and import values from functions defined via s-progn.

The implementation of s-progn and s-eval is based on delayed evaluation.
While the theoretical specification of DUAL postulates that symbolic processes run
smoothly and at variable speed, the implementation carries them out in instanta-
neous jumps. Pauses are imposed between the jumps to produce the timing postu-
lated by the theory.
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When a processor begins working on some symbolic operation, it does not ac-
tually execute it. Instead, it wraps it in a closure and stores it on a stack. One such
stack is maintained for each processor (i.e. DUAL agent). There is an energy balance
associated with each stack. The energy balance is equal to the difference between
supplied and consumed energy. When the balance is negative, the processor waits
until it becomes positive. On each connectionist cycle, the connectionist machinery
increases the balance with some small amount depending on the activation level and
the efficiency coefficient of the host. After some time, the balance becomes positive
and the top closure on the stack is popped and executed.

The S-Lisp compiler analyzes the source code, identifies all occurrences of
s-eval and replaces them with plain Lisp forms that generate closures and arrange
them on the stack. The stack is established by the enclosing s-sprogn form. The
top-level loop of the implementation checks the stacks of all active DUAL agents
and pops the ones with positive energetic balance. This scheme also supports the
parallel work of multiple agents.

S-Lisp programs should be written with care because many intuitions from
plain Lisp are violated. In particular, s-progn does not return any useful value.
This is because a call to s-progn does not execute the forms in its body; it de-
lays them. Thus the value that the programmer expects will be computed later,
long after the original call to s-progn is over. s-values must be used to
export a value out of a suspendable function and this value must be bound via
suspended-value-bind.

A mailbox technique is used to transfer suspended values through destructive
operations executed as side effects. A mailbox is a data structure containing a field
that can be modified destructively. The job of s-values is to make a new empty
mailbox and to arrange that the suspended value (or multiple values) will be stored
in it when the suspended computation is completed. The job of s-progn is to catch
the mailbox, open it at the appropriate time, and bind the values to local variables
accessible within its lexical scope.
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