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Abstract 

ANCHOR is an integrated memory-based scaling model that accounts for a wide 
range of phenomena in category rating and absolute identification. The model uses 
anchors stored in memory that serve as prototypes for each response category. The 
stimuli  are  represented  by  magnitudes.  Two  alternative  formulations  of  the 
magnitude  variability  are  considered:  additive  noise,  which  leads  to  logarithmic 
scales, and multiplicative noise, which leads to power scales. Both formulations are 
consistent  with  Weber’s  and  Stevens’s  laws.  Four  variants  of  the  ANCHOR 
framework systematically explore these alternative formulations. The performance 
of the models is evaluated against experimental data. The results show that the form 
of the perceptual equation is not critical for the operation of the model. Thus, the 
power vs. logarithmic controversy does not affect  ANCHOR’s central claim that 
human scaling performance is memory-based. 
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Introduction 

Ever since the seminal work of Thurstone (1927) subjective continua 
occupy a prominent place in psychological theory. This notion 
captures in a convenient and general way two complementary aspects 
of the perceptual system: its systematicity and variability. A stimulus 
of physical intensity S gives rise to an internal magnitude M. Due to 
perceptual uncertainty, M is a random variable with non-zero 
variance. Its location is systematically related to the intensity S. 

This paper elaborates some of these ideas within the framework of the 
ANCHOR model (Petrov, 2001; Petrov & Anderson, 2000, 2005). 
The presentation rests entirely on absolute-identification data, 
although the model applies equally well to other scaling tasks (Petrov 
& Anderson, 2005; Petrov, 2007). The absolute identification task is 
of considerable interest because it reveals some intriguing limitations 
of the cognitive system (Miller, 1956). Moreover, it makes direct 
contact with both psychophysical scaling (notably category rating)
and memory (notably paired-associate learning). These are exactly the 
two domains that ANCHOR sets out to integrate. 

The most influential model of absolute identification postulates N − 1 
criteria that partition the subjective continuum into N regions 
(Torgerson, 1958). When a stimulus is presented for identification, its 
internal magnitude falls within one of these regions and is labeled 
with the corresponding response. The overall accuracy is limited by 
uncertainties within the perceptual system (“perceptual noise”) and/or 
in the criterion locations. When augmented with mechanisms for 
dynamic criterion setting this framework can account for various 
sequential effects (Treisman & Williams, 1984). A criterion bisects 
the magnitude continuum and is very natural for binary decisions. 
When the number of responses increases, however, the criterion 
framework becomes progressively unwieldy and an alternative 
framework seems more appealing. Instead of emphasizing the 
boundaries between adjacent regions, it centers on the prototypes—or 
anchors—of each response category. 
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The anchors are magnitude-response associations that reside in 
memory and internalize the stimulus-response mapping required by 
all scaling tasks. Using the magnitude of the target stimulus as a cue, 
the memory system selects a single anchor that, perhaps after a minor 
correction, determines the response. The selection mechanism is 
probabilistic and sensitive to factors such as similarity, recency, and 
strength.  

The anchor-based scheme offers considerable advantages (Petrov & 
Anderson, 2005). It is very straightforward and consistent with the 
introspective protocols of human observers. The growing field of 
memory psychophysics (Algom, 1992) provides abundant evidence 
that magnitude-response associations can be committed to memory 
and maintained over extended periods. There are also well 
documented sequential (e.g., Luce, Nosofsky, Green, & Smith, 1982; 
Lockhead & King, 1983) and context effects (e.g., Parducci & 
Wedell, 1986) that clearly indicate that some kind of internal state 
persists across trials, blocks, and even days and influences subsequent 
processing. Memory seems the most natural candidate to perform this 
function. Finally, the anchor hypothesis meshes seamlessly with the 
huge corpus of memory-related theory and data and in particular the 
ACT-R architecture (Anderson & Lebiere, 1998). ANCHOR thereby 
establishes connections between psychophysical scaling and a whole 
array of ACT-R applications. 

The link between the two theories is the construct of internal 
magnitude (Figure 1). It is assumed that some sensory processes, 
collectively referred to as perceptual subsystem, construct a 
magnitude M that encodes the intensity of the stimulus S. This 
magnitude is then processed within the central subsystem to 
determine the overt response R. Each subsystem can maintain an 
internal state that evolves in time and differs from trial to trial. The 
processing, therefore, is far more complex than the simple sequence 
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suggested by the diagram. The response R depends not only on the 
immediate stimulus S but also, at least in principle, on all previous 
stimuli and responses. This gives rise to various sequential, context, 
transfer, and other dynamic effects. 

The defining claim of the ANCHOR theory is that the bulk of the 
processing within the central subsystem is memory-based. This claim 
is supported by experimental evidence and by detailed simulations 
with the model (Petrov, 2001, 2007; Petrov & Anderson, 2005). It 
seems warranted, therefore, to adopt the ANCHOR characterization 
of the central subsystem and consider its implications for the 
perceptual one. This is the task we set for ourselves in this article.  
The next section presents ANCHOR first in general terms and then 

with specific equations.
1 

Building on this foundation, subsequent 
sections discuss two alternative forms of the perceptual equation. 
Then an identification experiment is reported and the alternative 
versions of the model are fitted to the data. 

Main Principles of ANCHOR 

At the most general level our theory rests upon the following four 
principles.  Internal Magnitude Continuum. Each stimulus induces a 
subjective magnitude M. It is this internalized quantity that can be 
committed to memory and compared against other magnitudes. More 
generally, magnitudes are a form of analog representations—relative 
positions and distances on the internal continuum correspond 
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systematically to relative intensities and similarities among the 
physical stimuli. 

Content-Addressable Memory. The second principle postulates 
content-addressable memory involving these magnitudes. In 
particular, it is possible to establish associations between a magnitude 
and the label of a response category. These anchors substantiate the 
mapping between magnitudes (and hence the stimuli represented by 
them) and responses. When a new target magnitude is produced by 
the perceptual subsystem, the memory fills in the corresponding 
response label. This completion process is stochastic and depends on 
two factors: (a) the location of the target magnitude with respect to 
the various anchors in memory and (b) the frequency and recency of 
use of each response category. The latter factor is captured by the 
base-level activations (or biases) of the anchors. These activations 
play a very important role in the theory and make direct contact with 
many memory-related phenomena. 

Explicit Correction Strategies. Because the memory system is noisy 
and prone to biases, it is not guaranteed to provide on each trial the 
anchor that best matches the target magnitude. The verbal protocols 
of human observers suggest that they are aware of the unreliability of 
their “first guesses” and adopt explicit correction strategies. 
Consequently, the third ANCHOR principle provides for such explicit 
corrections. Phenomenologically, an introspective report of a trial 
might go like this, “I see the stimulus. . . It looks like a 7 . . . No, it’s 
too short for a 7 ; I’ll give it a 6.” Such increments and decrements 
have far-reaching implications and are vital for the stability of the 
overall system, especially in the absence of feedback. Obligatory 
Learning.. So, the stimulus has been encoded, matched against 
anchors, and a response has been produced. Is this the end of the trial? 
No, according to the fourth ANCHOR principle. Two learning 
mechanisms update the internal state of the model: the base-level 
activations and locations of the anchors. All changes are incremental 
and give rise to various dynamic effects.   
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The Perceptual Subsystem

ANCHOR uses a simplified generic formulation of the perceptual 
subsystem that still takes into account the fundamental empirical 
constraints imposed by Weber’s and Stevens’s laws. The whole 
subsystem is modeled by a single equation describing the distribution 
of magnitudes as a function of the stimulus intensity S. It abstracts 
away factors such as attention, habituation, Gestalt, etc. They can be 
included in the future without disrupting the rest of the theory. 

Weber’s Law. One empirical constraint that cannot be neglected by 
any credible scaling system is that the difference threshold ΔS tends 
to be proportional to S over much of the dynamic range of the 
stimulus attribute (Fechner, 1860/1966). Thus the ratio of the two—
the Weber fraction—is approximately constant for a given perceptual 
modality: 

                             ΔS/S = k = const (1)

Stevens’s Law. The other major empirical regularity comes from a 
vast array of magnitude estimation and category rating studies 
(Stevens, 1957, 1975; Stevens & Galanter, 1957). For intensive (or 
prothetic) continua the average rating R varies approximately as a 
power function of the stimulus intensity S: 

                         R = aS
n

     (2)

Both Weber’s and Stevens’s laws are subject to qualifications and 
various alternative formulations have been proposed (e.g., Ekman, 
1959; Norwich & Wong, 1997). Most of them deal with deviations 
near the low absolute threshold and can be put aside for our present 
purposes.  
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Additive Noise Equation. The standard interpretation of Weber’s law 
is that the subjective magnitude M is proportional to the logarithm of 
the stimulus. Assuming equal variance (Fechner’s postulate), this 
explains the progressively poorer discriminability at higher intensity 
levels. Equation 3 formalizes these ideas. In it, a is an arbitrary 
conversion factor and εp is a Gaussian deviate with mean zero and 
variance scaled by the free parameter σp = const. This perceptual 
noise makes the magnitude M a random variable too. 

                                      M = a (log S + σpεp)                                   (3)

Multiplicative Noise Equation. It is possible, however, that the 
standard deviation of each magnitude distribution grows in proportion 
to its mean (Ekman’s law, 1959). The spacing among the means can 
thus be less compressive than the logarithm in Equation 3 and still 
produce poorer discriminability at higher intensities. In fact, it has 
been shown mathematically that when the centers of the magnitude 
distributions vary as a power function of the stimuli, Ekman’s law 
implies Weber’s law and vice versa (Norwich & Wong, 1997; Petrov 
& Anderson, 2005). This leads to Equation 4, in which n is the 
exponent from Stevens’s power law (Eq. 2) and kp is a dimensionless 
coe�cient of proportionality. The noise εp has zero mean and unit 
variance as in Equation 3. 

                                     M = aS
n
(1 + kpεp)                                         (4)

In summary, we have two alternative equations, one with additive and 
the other with multiplicative perceptual noise, that are equally 
consistent with the two foremost empirical regularities in the 
psychophysical literature.  Faced with this underdetermined situation 
the theoretician has a choice. We have no strong commitments on this 
issue, although all ANCHOR simulations reported so far (Petrov, 
2001, 2007; Petrov & Anderson, 2000, 2005) use Equation 4. Our 
goal in the present paper is to investigate whether this particular 
choice limits the applicability of our earlier results. To that end, we 
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compare the behavior of the model under additive and multiplicative 
noise, everything else being equal. Before embarking on this project, 
however, a brief description of the other ANCHOR mechanisms is in 
order.

The Central Subsystem

Four computational mechanisms cooperate to map magnitudes to 
overt responses (cf. Figure 1).

The model maintains an anchor for each response category. The 
location Li of each anchor i represents the current estimate of the 
prototypical member of the corresponding category. When a target 
magnitude M is presented for identification, it acts as a memory cue 
and the anchors compete to “match” this target. Due to memory 
fluctuations, the processing on each trial depends on anchor 
magnitudes Ai, which are noisy versions of the locations Li. For 
consistency, the memory noise in the model has the same form as its 
perceptual counterpart. Thus, Equation 5 and 3 form a pair, and 
similarly Equations 4 and 6. The standard deviation of the additive 
memory noise is aσm and the coefficient of the multiplicative noise is 
km. Again, εm is Gaussian with zero mean and unit variance. 

                                      Ai = Li + aσmεm                                                             (5)

                                     Ai = Li (1 + kmεm)                                           (6)

A selection mechanism determines, stochastically, a single anchor on 
each trial. The outcome of the competition is described by two 
equations in the model. Equation 7 produces goodness scores Gi and 
the “softmax” Equation 8 converts them into selection probabilities 
Pi: 

   
                                                (7)
                        
                     (8)
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Each goodness score Gi is a sum of two terms: similarity −|M − Ai| 
and history HBi. The first is simply the negation of the mismatch 
between the target magnitude M and the anchor magnitude Ai. The 
second term reflects the base-level activation Bi of the anchor, 
weighted by a parameter H. It does not depend on the target at all. 
The “temperature” parameter T controls the degree of non-
determinism in the selection process. 

The memory system is noisy and prone to biases. Therefore it is not 
guaranteed to provide the anchor that best matches the target. The 
correction mechanism attempts to compensate for that. It compares 
the target magnitude M and the anchor magnitude A to determine the 
discrepancy D = M − A. If the latter is less than some cutoff value c, 
the response associated with the anchor is chosen as the final response 
on the trial. Otherwise the anchor response is corrected by ±1 or 
occasionally even ±2 depending on the algebraic difference D. The 
respective cutoffs are ±c and ±3c. The final response R is the sum of 
the anchor label and the correction, clipped between the lowest and 
highest valid category if needed. 

The cutoff parameter c is chosen so that the corrections are 
conservative—substantial discrepancy D is required to trigger any 
changes. The memory-related effects introduced during the anchor 
selection process thus persist, albeit attenuated, and produce 
sequential and context effects in the responses. The insufficiency of 
adjustment is a recurring theme in the diverse literature on anchoring 
effects (e.g., Tversky & Kahneman, 1974; Wilson, Houston, Etling, & 
Brekke, 1996). At the end of the trial, feedback indicating the correct 
response is typically provided in absolute identification experiments. 
In category rating without feedback, the model uses its own response 
as the best available estimate. Either way, exactly one anchor is 
considered “used” on that trial and its location L is updated according 
to Equation 9, which is a form of competitive learning. The new 
location is pulled towards the target magnitude M, thereby improving 
the chances that the same anchor will match this target in the future. 
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This tends to promote consistency but has other consequences as well, 
notably context effects (Petrov, 2007; Petrov & Anderson, 2005). 

                          L
(t+1) 

= (1 − α)L
(t) 

+ αM
(t)                                                                                

(9) 

In the long run, the location of each anchor becomes a running 
average (exponentially discounted by the learning rate α) of the 
magnitudes of all stimuli classified under the associated response 
category. Therefore the anchors represent true prototypes.

In contrast to the competitive learning mechanism, the base-level 
learning Equation 10 updates the availability of every anchor on each 
trial. The formula is not transparent and can be discussed only briefly 
here. See Petrov (2006) for details. It is an approximate and 
parameter-free version of the base-level learning equation in ACT-R 
(Anderson & Lebiere, 1998, p. 124). The availability B of a given 
anchor reflects the frequency and recency of its use. The formula 
disregards the detailed history and retains only three critical pieces of 
information: the lag since the most recent use tlast, the total time since 
the creation of the anchor tlife, and the overall number of uses n. 

         (10)

Qualitatively, Equation 10 captures three important aspects of 
memory dynamics: sharp transient boost immediately after use, 
gradual buildup of strength with frequent use, and gradual decay in 
the absence of use (Petrov, 2006).
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Identification Experiment

To evaluate the performance of the ANCHOR model under the 
alternative noise formulations, we use the data set from an absolute 
identification experiment reported in full detail in (Petrov & 
Anderson, 2005). Only a small subset of the data is sufficient for our 
present purposes and is described below. 

Method. The stimuli were pairs of dots presented at randomized 
locations on a monitor. The independent variable was the distance 
between the dots. Only 9 stimulus lengths were involved: 275, 325, 
375, . . . , 675 pixels (275 pix ≈ 88 mm ≈ 8.4 deg. visual angle; 675 
pix ≈ 216 mm ≈ 20 d.v.a). The imaginary segment formed by the dots 
was always horizontal. 24 na¨ıve observers were instructed that there 
were 9 stimuli and 9 responses and that their task was to identify “the 
distance between the dots” by pressing a key from 1 to 9. Each 
observer completed 450 trials with feedback. The stimulus 
presentation frequencies were non-stationary in order to induce 
context and transfer effects (see Petrov & Anderson, 2005, for 
details). The presentation schedule was counterbalanced so that each 
stimulus appeared exactly 50 times. 

Results. The experiment yielded a wealth of data and replicated all 
classical absolute-identification phenomena falling within its scope. 
These included: limited information capacity (Miller, 1956), various 
sequential effects, repetition effect, edge effect, and practice effect. 
An unexpected assimilative context effect was also found (Petrov & 
Anderson, 2005). 

The linear correlation coefficient between stimuli and responses is 
extremely high (r> 0.92 for all observers). This suggests a linear 
relationship and can be interpreted as a power law with n = 1 (Eq. 2). 
This replicates the robust finding that the exponent for line length is 
very close to 1.0 (Stevens, 1975; Stevens & Galanter, 1957). 
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Three empirical profiles are singled out as our current modeling 
targets. They are plotted with “–×–” symbols in Figure 2. The top 
panel shows the overall probability of correct identification for each 
of the nine stimuli. An edge effect is clearly visible. The elevated 
accuracy near the edges could stem from the simple fact that there are 
fewer possibilities for mistake there. The inter-stimulus 
discriminability d’i,i+1  is a better measure of the identification
performance (Luce et al., 1982). It is calculated from the S × R
probability matrix for each of the 8 inter-stimulus boundaries. 
Whenever Si+1 is  presented, all responses ≥ i + 1 are considered “hits” 
and those ≤ i “misses.” On the other side of the boundary, on trials 
with Si the responses ≥ i + 1 are “false alarms” and ≤ i “correct 
rejections.” The discriminability d’ is then computed in the usual way, 
separately for each participant. The middle panel in Figure 2 plots the 
group average. 

The asymmetry in the d
’
profile suggests that short distances are more 

discriminable than long ones. This finding is directly related to 
Weber’s law (Eq. 1) and hence to the issues of main interest here.  
Each stimulus elicits a whole distribution of responses. The third 
panel in Figure 2 plots the standard deviations of these distributions. 
The profile seems to increase but not by much: all values vary 
between σ2 =0.63 and σ8 =0.81 (save the flanks, which are 
contaminated by edge effects). 
Let us assume temporarily, as Stevens (1957) once did, that the overt 
responses R are direct reports of the internal magnitudes M. Then the 
additive noise Equation 3 would predict a flat deviation profile for all 
stimuli. The multiplicative Equation 4 with n = 1, on the other hand, 
predicts proportionality. 

On the surface, the empirical profile looks like a compromise between 
these two extremes. Such conclusion, however, is unwarranted 
because the responses are only indirectly related to the internal 
magnitudes. Moreover, the task involves feedback. The deviation data 
must be interpreted in a framework that takes the M → R transition in 
Figure 1 into account. Thus we turn to the ANCHOR model.  
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Model Fits and Simulations

We experiment with four variants of the model—denoted Plin, Plog, 
Mlin, and Mlog below. The two “perception only” variants P bypass 
most central mechanisms in order to highlight the perceptual 
subsystem. The M variants engage all mechanisms. In particular, Mlin 

is synonymous with the standard ANCHOR model (Petrov & 
Anderson, 2005).  The multiplicative noise Equation 4 defines a linear 
magnitude scale when n = 1. This is the basis of model Plin. The 
conversion factor a is arbitrarily set to alin =0.001 so that stimulus S5, 
which is 475 pixels long, produces magnitudes centered on M =0.475. 
The coefficient kp is the only free parameter of this model. The nine 
anchors are optimally placed (at the images of the stimuli) and the 
response is always based on the anchor that best matches the target. 
This is equivalent to a Thurstonian system with fixed criteria 
(Torgerson, 1958). 

Model Plog is based on the additive noise Equation 3 and hence a 
logarithmic magnitude scale. In an effort to make the simulations as 
comparable as possible, the conversion factor a in this case is set to 
alog =0.0771. Thus the image of S5 is again M =0.475. The anchors are 
placed at the logarithmic images of the stimuli. Everything else is as 
in Plin. The standard deviation σp is a free parameter. Model Mlin

upgrades Plin with all central mechanisms. The memory noise is 
multiplicative (Eq. 6). This amounts to the standard ANCHOR model 
and provides default values for many parameters (Petrov & Anderson, 
2005). It is convenient to formulate them in category-size units δ. The 
distance between any two adjacent categories on the linear scale is δlin

=0.050. The default history parameter is H =0.100 = 2δ (Eq. 7); 
temperature T =0.050 = δ (Eq. 8); rate α =0.3 (Eq. 9). Three free 
parameters remain: kp, km, and the cutoff c.  Finally, model Mlog

explores an additive-noise version of ANCHOR. Equations 3 and 5 
replace 4 and 6, respectively. Everything else remains the same. The 
new category-size unit is estimated as the geometric mean of the eight 
intervals on the scale. For alog =0.0771 this yields δlog =0.0084. The 
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default parameters can now be converted: H =2δ =0.0167, T = δ 
=0.0084, α =0.3. Model Mlog thus has three free parameters: 
σp, σm, and c.

Each model is fitted to the empirical d
’
profile via least mean squares. 

The optimal parameters are as follows. Plin: kp =0.076. Plog: σp =0.076. 
Mlin: kp =0.031, km =0.046, c =0.75 δlin. Mlog: σp =0.041, σm =0.050, c 
=0.50 δlog. 

Next, we generate predictions from the models and compare them 
against the three empirical profiles (Figure 2). The predictions for 
models Plin and Plog can be calculated directly from the corresponding 
perceptual equation. For the full models we must resort to 
simulations. Both models are run 10 times on each of the 24 stimulus 
sequences shown to the human observers. The responses are then 
analyzed in exactly the same way as the empirical data. 

Table 1

Root mean squared errors of the fits of the models described in the 
text to the empirical profiles.
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Figure 2 plots the simulated profiles and Table 1 reports the 
associated root mean squared errors. Several features of these results 
deserve pointing out. The two “perception only” variants are nearly 
equivalent. In fact, their profiles are so close to each other that are 
plotted together in Figure 2. This is consistent with their 
mathematically proven equivalence with respect to Weber’s law and 
suggests that the equivalence extends to the absolute identification 
task as well. (The proofs are for the 2AFC task.) Remarkably, the 
response variability profiles (bottom panel) of Plin and Plog are very 
similar too, with only minor discrepancies at the edges. Thus, even 
though the noise on the magnitude continua is qualitatively different
in the two models, the variability of the overt responses is the same. 
This is explained by the compensatory spacing of the anchors. The 
predicted profile, however, is too steep in comparison with the 
experimental data. 

The full models Mlin and Mlog are superior to their simpler 
counterparts. In general, the central subsystem tends to redistribute 
resources among the anchors, thereby reducing the steepness and 
asymmetry of all three profiles. This improves the fits as the empirical 
profiles tend to be quite level (barring the edge effects). The only 
feature that all four models fail to reproduce is the upward turn at the 

right edge of the d
’

profile (the bow effect). Model Mlin is the least 
discrepant from the experimental data in this region, which explains 
its reduced error (rmse =0.17) relative to the other models. 

Finally, we come to the comparison of greatest interest: Mlin versus 
Mlog. The quantitative fits in Table 1 show that the standard 
ANCHOR model (≡Mlin) performs slightly better. The additive-noise 
variant, however, does not lag far behind and its profiles are 
qualitatively very similar. Moreover, Mlog competes with a handicap 
as all default parameters have been fine-tuned within the 
multiplicative framework. Also, the correction mechanism assumes 
uniform category sizes (on the magnitude continuum) in accordance 
with the assumptions of the linear model. Under the logarithmic 
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reformulation, this tends to generate corrections that are too 
aggressive for the shortest stimuli and too conservative for the longest 
ones. It seems likely that model Mlog, which already achieves very 
good fit, can be fine-tuned to the extent to which Mlin is. In light of all 
these considerations the final outcome of the competition appears to 
be a tie. 

Conclusions

Our results show that the distinction between additive and 
multiplicative noise does not significantly affect the ability of the 
ANCHOR model to account for the data from the identification 
experiment. Consequently, the controversy between logarithmic and 
power-based sensory scales (e.g., Krueger, 1989) that has dominated 
the psychophysical literature since Stevens’s original article (1957) 
cannot detract from ANCHOR’s primary goal—to explore the 
hypothesis that the transition between magnitudes and responses is 
memory-based. The present article contributes to this goal by showing 
that the particular form of the perceptual equation is not critical for 
the operation of the model. This suggests that the successful accounts 
provided by the memory hypothesis for over a dozen sequential, 
context, and other dynamic effects are not dependent on this issue 
either.  
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