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ABSTRACT
The divisive normalization model [Heeger, 1992] accounts
successfully for a wide range of phenomena observed in single-
cell physiological recordings from neurons in primary visual
cortex (V1). Using mathematical analyses and simulation
experiments, we investigated the role of the maintained-
discharge (base firing rate) parameter in this model. We
developed an implementation that can take grayscale images
as inputs and applied it to the types of visual stimuli used
in a comprehensive suite of published physiological studies.
We found that three empirical phenomena are closely as-
sociated with the maintained-discharge parameter: (A) the
existence of inhibitory regions in the receptive fields of sim-
ple cells in V1, (B) the supersaturation effect in the con-
trast sensitivity curves, and (C) the narrowing/widening of
the spatial-frequency tuning curves when the stimulus con-
trast decreases. The model predicts two patterns of these
phenomena: One possibility is that a neuron can show A,
B, and widening (C); the other possibility is to show not-A,
not-B, and narrowing (C). This interdependence is a po-
tentially falsifiable prediction of the divisive normalization
model.
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1. INTRODUCTION

Neurons in the primary visual cortex (area V1) of mammals
have been extensively studied since the seminal studies of
Hubel and Wiesel [16, 17]. There is ample evidence of sys-
tematic relationships between various properties of the reti-
nal image and the firing rates of individual neurons in V1.
A wealth of single-cell recording data in V1 have been accu-
mulated since the 1960s [7] and a variety of computational
and mathematical models have been proposed to account for
the patterns in these data [3, 12].

Among those models, Heeger’s [14] divisive normalization
model has been very successful (see [4, 5, 14] for reviews).
It functionally formulates a relation between visual stimuli
and the response (firing rate) of an individual neuron. A
general form of the model can be written as follows [24]:

R(I) = M
bβ + Etuned(I)cnN

αnD +
∑
i wiEi(I)nD

(1)

where M , nN , nD, α, and β are constants and I is a retinal
image (see [2, 18] for analogous formulations). The param-
eters M , nN , nD, and α are positive. It is often assumed
that nN = nD = n. The half-wave rectification operator bEc
equals E if E > 0 and 0 otherwise. The stimulus drive
Etuned(I) in the numerator represents the classical recep-
tive field of a neuron and its tuning in the orientation and
spatial frequency domains. The model is tuned to a grating
whose orientation is θ◦ and spatial frequency is f cycles/deg
(= log2f octaves). The stimulus drive is formulated as:

Es:xyfθφ(I) =

∫∫
I(X,Y )Gxyfθφ(X,Y )dXdY (2)

where:

Gxyfθφ(X,Y ) =

exp(
−X̆24 ln 2

hX̆
2 +

−Y̆ 24 ln 2

hY̆
2 ) sin (fY̆ − φ) (3)

{
X̆ = (Y − y) sin θ + (X − x) cos θ

Y̆ = (Y − y) cos θ − (X − x) sin θ

for a simple cell with preferred phase φ, and:

Ec:xyfθ(I) =

√
Es:xyfθ0◦(I)2 + Es:xyfθ90◦(I)2 (4)

for a phase-invariant complex cell. Note that hX̆ and hY̆
define the full-widths at half-height of the Gaussian enve-
lope of the Gabor function Gxyfθφ(X,Y ) and determine how
sharply the stimulus drive is tuned to the grating [11].



The suppressive drive ΣiwiEi(I)nD in the denominator rep-
resents the aggregated inhibitory influence from neurons with
different tuning (cross-orientation suppression) and/or nearby
receptive fields (surround suppression). Specifically, Equa-
tion 1 formalizes the hypothesis that the lateral interactions
in V1 can be modeled in terms of divisive normalization.

Many of the past studies paid attention only to the expo-
nent n and the semisaturation parameter α. In particular, a
popular simplifying assumption is that β = 0, which neglects
the potential role of this parameter. Our goal in this article
is to explore this heretofore neglected aspect of the model.
A positive value β > 0 is interpreted naturally as the main-
tained discharge of the neuron, defined as the firing rate
when the retinal image I is in uniform gray. Empirically,
physiological measurements of the maintained discharges of
V1 neurons are usually low but non-zero [6, 15, 16, 21]. On
the other hand, a negative value β < 0 in the context of the
half-rectification operator in Equation 1 imposes a threshold
on the stimulus drive. Such thresholding has been invoked
to explain some phenomena observed in physiological exper-
iments [13, 25, 27]. This shows that negative settings of β
can affect the model predictions and opens the possibility
that positive settings may affect the predictions too.

In this study, we conducted simulation experiments with
a computer implementation of the divisive normalization
model. The simulations were designed to investigate sys-
tematically the role of the parameter β in Equation 1.

2. SIMULATION EXPERIMENT
The divisive normalization model (Equation 1) was imple-
mented in Matlab so that it can take a static grayscale im-
age as input and produce a firing-rate response to this in-
put. The model was calibrated and tested with a large set
of stimuli taken from physiological experiments [23, 24] and
the qualitative response patterns were compared with the
corresponding patterns in the physiological data.

2.1 Model
The suppressive drive ΣiwiEi(I)nD in the denominator of
Equation 1 is specified as follows:∑

i

wiEi(I)nD =

NX∑
xi

NY∑
yi

NF∑
fi

NΘ∑
θi

wxiyiwfiwθiEc:xyfθ(I)nD (5)

where: 
wxiyi ∝ exp −((xi−x)2+(yi−y)2)4 ln 2

hRw
2

wθi ∝ exp (κΘw cos 2(θi − θ))
wfi ∝ exp −(fi−f)24 ln 2

hFw
2

(6)

and hRw , κΘw , and hFw are constants specifying the widths
of the pooling kernels w across space, orientations, and fre-
quencies, respectively. This expression accounts for the cross-
orientation [9] and surround [8] suppression of the neurons
in V1. In cross-orientation suppression, the response of the
neuron to a grating (signal) is suppressed by another grat-
ing (mask) superimposed on the signal within the classical
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Figure 1: Maps of simple-cell receptive fields (RFs)
in the model with β = +0.03 and two different phases
φ. The RFs were measured with a light spot as a
stimulus probe. The inhibitory sub-regions are de-
picted in blue. The response of the model became
lower than its maintained discharge (3.6, indicated
by the triangle J on the color bar) when those re-
gions are stimulated with the light spot. On the
contrary, the response increased by stimulating the
excitatory sub-regions (depicted in red).

receptive field (CRF). Surround suppression is the analo-
gous effect when the mask is shown outside the CRF. It has
been shown that the suppressions happen in wider ranges
of the orientation and spatial-frequency domains than the
excitatory tuning of the neuron [8, 9]. The response of the
neuron is suppressed even by a grating whose orientation is
orthogonal to the tuned orientation.

The stimulus and the suppressive drives of the model are
normalized so that their outputs equal 1.0 for a grating with
the tuned frequency and the tuned orientation of the model,
and with maximal contrast (= 1).

The model parameters in the simulation experiment were set
as follows: β = ±0.03, M = 40, nN = nD = 2.0, α = 0.1,
θ = 90◦, f = 2.0 cycles/deg, hX = 0.63 and hY = 0.46 deg,
κΘw = 1.22, hFw = 2.0 octaves, and hRw = 1.0. These set-
tings reflect typical neurophysiological measurements [1, 2,
7, 26], prior modeling [14, 18], and calibration conventions.

2.2 Results
A comprehensive suite of physiological experiments were em-
ulated using the computational model [23, 24]. The simula-
tion results and the analysis below indicated that β plays a
systematic role for the following three phenomena.

(A) First, β must be larger than 0 to account for the classic
results of Hubel and Wiesel [16]. They observed that the
response of a simple cell decreases below its maintained dis-
charge when the inhibitory sub-region of the receptive field
(Figure 1) is stimulated with a single spot of light. The ef-
fect of the suppressive drive ΣiwiEi(I)nD in Equation 1 is
not strong enough by itself to account for this phenomenon
when the stimulus is a single spot of light.

(B) It is often considered that the response increases mono-
tonically as the contrast of the grating in the neuron’s re-
ceptive field increases. However, at high stimulus contrasts
the response of some V1 neurons has been observed to de-
crease as the contrast gets even higher [29, 20, 28]. Namely,
the contrast sensitivity curves of those neurons are unimodal
but are not monotonic (cf. Figure 2, solid line). This super-
saturation effect can be emulated by the model only if the
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Figure 2: Contrast sensitivity curves of the model
(complex cell) with β = −0.03 (dotted) and β = +0.03
(solid). The response of the model with β = −0.03 in-
creased monotonically as the contrast of the grating
increased. The response of the model with β = +0.03
showed a qualitatively different, nonmonotonic pro-
file. The maximal response occurred in the middle
of the range (32%, indicated by a triangle H) and
slightly decreased at higher contrasts.

maintained discharge is high enough:

β >
nN
nD

(1 + αnD )− 1 (7)

To see why, consider a grating g(c) with contrast c, the
model’s preferred orientation and frequency, and spatial ex-
tent large enough to fill the entire receptive and surround-
suppression fields. Then, from Equation 1 and our calibra-
tion conventions, the sensitivity curve for this grating is:

R(g(c)) = M
bβ + ccnN

αnD + cnD
(8)

and its first derivative with respect to c is:

d

dc
R(g(c)) =

(cnD (nN − nD)− βnDcnD−1 + nNα
nD )

M−1(αnD + cnD )2(β + c)1−nN
(9)

for b−βc ≤ c ≤ 1. Note that dR(g(c))/dc > 0 at c = 0 and
the contrast sensitivity curve is increasing at low contrasts.
If Inequality 7 is satisfied, dR(g(c))/dc < 0 at c = 1. Then,
the sensitivity function is decreasing at high contrasts and
must have a local maximum between b−βc and 1, exclu-
sive. This is the supersaturation effect, and Inequality 7 is
a sufficient condition for the effect.

(C) The tuning bandwidths of some V1 neurons in the spa-
tial frequency domain become narrower while those of other
V1 neurons become wider as the contrast of the grating de-
creases [1, 25]. It has been thought that this narrowing is
caused by β < 0 (Figure 3) because the frequency tuning
of the model mostly depends on its numerator. The band-
width of the numerator of the model bβ + Etuned(g(c))cnN

becomes narrower as the contrast decreases if β < 0 and
becomes wider if β > 0.

However, the tuning bandwidth of the model in the fre-
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Figure 3: (a) Spatial frequency tuning functions of
the model (complex cell) with β = −0.03 (left) and
β = +0.03 (right) for different contrasts of the grating
(depicted in different colors). The responses of the
model at half height of the maximal responses for
each contrast are indicated by circles. (b) Change
of the tuning bandwidths (full width at half height)
plotted as a function of the contrast of the grating.

quency domain also depends on its denominator. The de-
nominator makes the bandwidth wider, and this widening
effect becomes weaker as c decreases. Hence, the denomi-
nator explains the effect that the bandwidth of the model
becomes narrower as c decreases, but not the opposite ef-
fect. Consider the tuning function of the denominator in
the frequency domain. It is unimodal and has its maximum
at the model’s preferred frequency. Because of the division
in Equation 1, a peaked denominator widens the bandwidth
of the model as a whole, compared to the bandwidth of the
numerator alone. This effect depends on c because the de-
nominator, which includes the constant αnD > 0, becomes
wider as c decreases. Hence, if the bandwidth of a V1 neu-
ron becomes narrower as c decreases, it can be explained by
either the denominator or β < 0 (or both). On the other
hand, if the overall bandwidth becomes wider as c decreases,
it can be explained only by the numerator term (β > 0).

Several physiological studies found an inconsistency between
the tuning bandwidths estimated directly by probing the
neuron with gratings of various orientations and frequencies,
on the one hand, and those calculated from the 2D spatial
pattern of excitatory and inhibitory sub-regions in the clas-
sical receptive field [19, 22, 27]. It has been thought that this
phenomenon can be explained by thresholding the response
of the neuron, which corresponds to β < 0 in Equation 1.
However, the phenomenon is observed from the model with



nN > 1 and nD > 1 [10] even if β > 0. The physiological
data suggests that this condition of nN and nD is satisfied
for many neurons in V1 [1, 2, 10, 26].

3. CONCLUSION
The results of the simulation experiment and the analysis on
the divisive normalization model show how the parameter β
affects phenomena A, B, and C listed above. To emulate
both A and B, β must be sufficiently large. If β is too
small, the model can emulate neither A nor B. At the same
time, β affects whether the bandwidth of the model in the
frequency domain becomes wider or narrower as the contrast
of the grating decreases (C). There is great diversity among
V1 neurons and, to our knowledge, it has never been studied
explicitly whether one and the same individual neuron can
exhibit phenomena A, B, and C simultaneously.

The divisive normalization model predicts a pattern of in-
terdependence among phenomena A, B, and C in neurons
in primary visual cortex. This relationship is a potentially
falsifiable prediction of the model.
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