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Recent reports of training-induced gains on fluid intelligence tests have fueled an explosion of
interest in cognitive training—now a billion-dollar industry. The interpretation of these results is
questionable because score gains can be dominated by factors that play marginal roles in the
scores themselves, and because intelligence gain is not the only possible explanation for the
observed control-adjusted far transfer across tasks. Here we present novel evidence that the test
score gains used to measure the efficacy of cognitive training may reflect strategy refinement
instead of intelligence gains. A novel scanpath analysis of eyemovement data from35participants
solving Raven's Advanced Progressive Matrices on two separate sessions indicated that one-third
of the variance of score gains could be attributed to test-taking strategy alone, as revealed by
characteristic changes in eye-fixation patterns. When the strategic contaminant was partialled
out, the residual score gains were no longer significant. These results are compatible with
established theories of skill acquisition suggesting that procedural knowledge tacitly acquired
during training can later be utilized at posttest. Our novel method and result both underline a
reason to be wary of purported intelligence gains, but also provide a way forward for testing for
them in the future.
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1. Introduction

Can intelligence be improved with training? For the most
part, the numerous training methods attempted through the
years have yielded disappointing results for healthy adults
(e.g., Detterman& Sternberg, 1982). Nonetheless, if an effective
training method could be designed, it would have immense
practical implications. Therefore, when Jaeggi, Buschkuehl,
Jonides, and Perrig (2008) recently published some encouraging
experimental results, they were greeted with remarkable
enthusiasm. Cognitive enhancement is now a billion-dollar
industry Brain sells (2013). Millions of customers buy “brain
building” games and subscribe to “mental gyms” on-line where
y, 200B Lazenby Hall,
es.
v).
they performvarious “cognitiveworkouts” in the hope of raising
their IQ (Hurley, 2012). Hundreds ofmillions of dollars are being
invested in educational (e.g., Cogmed, http://www.cogmed.
com),military, and commercial programs (e.g., Lumosity, http://
www.lumosity.com) on the assumption that intelligence can be
improved through training. But can it really? Given the massive
societal resources that are at stake and the checkered track
record of similar initiatives in the past (e.g., Detterman &
Sternberg, 1982; Melby-Lervå̊g & Hulme, 2013; Owen et al.,
2010), this claim must be evaluated very carefully. Here we
present novel evidence that suggests reasons for skepticism. The
evidence is not definitive and the question remains open. It
leads directly to three other questions: (i) What is intelligence?
(ii) How can we measure intelligence? and (iii) How can we
measure gains of intelligence? The first two of those have been
debated and researched for over a century (see, e.g., Neisser
et al., 1996, for an authoritative review). The last question,
however, has not received the attention it deserves. One goal of
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this article is to point out howmethodologically challenging it is
to measure the change of a latent variable.

With respect to the first two questions, we adopt the
popular (though not universally accepted) psychometric
approach that both defines and measures fluid intelligence as
the latent variable explaining the intercorrelations in perfor-
mance on tasks such as analogy making, reasoning, and
problem solving. This approach is grounded in the fact that
individual differences in performance across a wide variety of
cognitive tasks are positively correlated (Spearman, 1927).
Through factor analysis, the matrix of intercorrelations can be
explained in terms of a hierarchical arrangementwith a general
intelligence factor G at the apex and various more specialized
abilities arrayed below it (Carroll, 1993; Jensen, 1998). The
second tier in the hierarchy includes the distinction between
crystallized (Gc) and fluid (Gf) intelligence (Carroll, 1993;
Cattell, 1963). Gc refers to overlearned skills and static
knowledge such as vocabulary, which undoubtedly accumu-
late with experience. In contrast, Gf refers to the ability to
detect patterns and relations, solve problems, and “figure
things out” in novel environments. Empirically, fluid intel-
ligence predicts many forms of achievement, especially
school achievement (Gottfredson, 1997). There is strong
evidence that Gf is highly heritable—between 50% and 75% of
the variance of intelligence test scores in healthy adults is
linked to genetic variation (Neisser et al., 1996). Although
heritability does not entail immutability (Dickens & Flynn,
2001), most psychometricians conceptualize Gf as a stable
trait that is relatively immune to interventions in adulthood
(Carroll, 1993; Jensen, 1998).

This is why a recent study by Jaeggi et al. (2008) triggered
such excitement and controversy. The study used a pretest-
train-posttest designwith an untrained control group. A titrated,
adaptive dual n-back task was practiced for up to 18 sessions in
the experimental group (N = 34) but not in the control group
(N = 35). All participants were pre- and post-tested on two
parallel short-form versions of a matrix-based Gf test—either
Raven's Advanced Progressive Matrices (Raven, Raven, & Court,
1998) or BOMAT (Hossiep, Turck, & Hasella, 1999).Whereas the
results showed statistically significant score gains in both
groups, the average gain in the trained group was significantly
higher than that in the control (p b 0.05, ηp2 = 0.07, Jaeggi et al.,
2008). The latter finding—a significant control-adjusted gain—
was interpreted as an improvement in Gf and fueled the current
boom in the cognitive enhancement industry, as well as a big
controversy in the scientific literature. Of particular relevance to
the controversy is that the original study (Jaeggi et al., 2008) had
various methodological shortcomings (Moody, 2009) and
subsequent attempts to replicate the putative improvement in
Gf have produced mixed results (e.g., Chooi & Thompson, 2012;
Harrison et al., 2013; Jaeggi, Buschkuehl, Jonides, & Shah, 2011;
Jaeggi et al., 2010; Redick et al., 2012; Thompson et al., 2013).
This rapidly growing field is characterized by large variations
in reported effect sizes (see Melby-Lervå̊g & Hulme, 2013, for
a meta-analysis of 23 studies), polarization of opinion, and
contradictory reviews (e.g., Buschkuehl & Jaeggi, 2010;Morrison
& Chein, 2011, on the optimistic side; Melby-Lervå̊g & Hulme,
2013; Shipstead, Redick, & Engle, 2012, on the skeptical side).

The neurobiological interpretation of Gf (M. Anderson, 2005;
Duncan et al., 2000) emphasizes its linkage to factors such as
processing speed (Jensen, 2006; Sheppard & Vernon, 2008) and
working memory capacity (Fry & Hale, 2000; Gray & Thompson,
2004; Halford, Cowan, & Andrews, 2007; Kane & Engle, 2002).
The interest in the latter linkage surged after Jaeggi et al.'s (2008)
publication because their participants trained on aWM task. The
hypothesis that fuels the current enthusiasm is thatWM training
increases WM capacity (near transfer), which in turn improves
Gf (far transfer). There is a strong analogy with athletics, where
swimming workouts, for example, increase cardiovascular
capacity, which in turn improves the general athletic ability.
Thus, Jaeggi et al. (2011) characterizeWMas “taking the place of
the cardiovascular system.”

This hypothesis is simple and elegant but the methodology
for testing it empirically is fraught with difficulties because an
objective method for measuring Gf gains is required. The
commonly used test–retest method is seriously flawed. The
overwhelmingmajority of studies use test–retest score gains to
measure Gf gains. This practice is based on the misleading
intuition that if a test such as Raven's APM is a valid measure of
Gf, then a gain in the score on this test is a valid measure of Gf
gain. This is not necessarily true because, in addition to Gf, the
scores reflect non-Gf factors such as visuospatial ability,
motivation, and test-taking strategy. The latter factors—and
hence the test scores—can improve while Gf itself remains
stable. Indeed, Raven's APM scores increase significantly on
repeated testing without any targeted training (e.g., Bors &
Forrin, 1995; Bors & Vigneau, 2003; Denney & Heidrich, 1990).
Worse, a large meta-analysis of 64 test–retest studies (te
Nijenhuis, van Vianen, & van der Flier, 2007) indicates a strong
negative correlation between score gains and the G loadings of
test items. To control for such “mere retest” effects, the
common practice in the field is to compare the score gains in
the treatment group to those in an untreated control group.
Cognitive enhancement advocates (e.g., Jaeggi et al., 2008)
acknowledge the interpretive problems of unadjusted score
gains but assume that control-adjusted gains necessarily
measure real gains in Gf. As we argue below, however, this
assumption is incorrect because the adjustment does not
guarantee validity either.

These methodological difficulties can be illustrated by
analogy with athletics. In a classic study of motor skill learning
(Hatze, 1976), an athlete practiced kicking a target as rapidly as
possible. His performance improved at first and then plateaued.
However, after seeing a film about kicking technique, the
athlete immediately improved his time considerably and with
additional practice was able to reach amuch higher asymptote.
For our purposes, this illustrates the relationships between the
following three variables. The first is kicking time, which was
the only objectivemeasurement. The second variable is general
athletic ability, which includes factors such as cardiovascular
capacity, agility, muscle strength, and so forth. The third is
kicking technique—the optimal way to execute a kick so as to
minimize kicking time, all else being equal. Importantly,
because the kicking time reflects a mixture of athletic ability
and technique, gains in kicking time can occur without any
change in athletic ability. Indeed, watching a movie could not
have changed the strength or agility of the participant in
Hatze's (1976) experiment. Analogously, gains in test scores
can occur without any change in “brainpower” factors such as
WM capacity or processing speed.

This brings us to the central topic of transfer across
tasks. The most widely used inference pattern in the cognitive



1 By contrast, the scores on verbal tests of Gf did improve from pre- to
posttest in both studies, but the gains in the experimental and control groups
were statistically indistinguishable.
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enhancement literature is to infer gains in Gf on the basis of
control-adjusted gains in test scores. This inference pattern
logically requires the auxiliary assumption that only Gf can
transfer across tasks. Few cognitive-enhancement advocates
would endorse such a strong claim, and the more cautious
authors explicitly disavow it, often near the end of their
Discussion sections (e.g., Morrison & Chein, 2011, p. 58). But
without this assumption, there is no logically necessary link
from the observed control-adjusted score gains to the theoret-
ical conclusion of Gf gains. Why not? Because non-Gf-related
factors can transfer across tasks too.

The athletic analogy can easily be extended to illustrate this.
Suppose that instead ofwatching amovie, the athlete inHatze's
(1976) experiment practiced a seemingly unrelated task such
as high jump. The problem is that tasks that seem unrelated on
the surface can still share critical technical components. For
example, the approach of the high jump may actually be as
important as the take off. It requires the right amount of speed
and the correct number of strides—factors that affect kicking
too. So, if an athlete practices high jump for many hours and
then can kick a ball faster than before, is this because the
jumping practice improved the explosive power of their leg
muscles? Or is it because it provided an opportunity to learn to
control the approach better? In other words, was there transfer
of athletic ability, of technical components, or both? These
possibilities cannot be differentiated on the basis of measured
gains in kicking speed alone. Analogously, a control-adjusted
gain on an intelligence test may stem from genuine Gf transfer
from the training task, from transfer of some non-Gf-related
component(s), or from a combination thereof.

Despite these interpretive problems, the research commu-
nity continues to explore various combinations of treatment
tasks, control tasks, and tests (see Morrison & Chein, 2011;
Melby-Lervåg & Hulme, 2013, for recent reviews), and in many
studies the only dependent variable is the (adjusted) gain in
test scores from pretest to posttest. This approach treats the
test as a black box and yields very few data points per
participant, which exacerbates the practical difficulties inher-
ent in multi-session between-subject designs. Progress has
been slow and the results have been inconsistent and open to
conflicting interpretations as referenced above. In the final
analysis, the problems persist because no conclusive inferences
can be drawn on the basis of test–retest comparisons alone. A
richer data source is needed.

There are two complementary ways to marshal more data to
test whether WM training improves Gf. The first is to assess Gf
not with a single test but with a broad battery of multiple tests.
The second approach is to use tools from cognitive psychology to
open the black box and investigate the actual processes that
determine the test scores and the gains thereof. In this article we
follow the second approach. The topic of multiple tests is
introduced only briefly here and will be discussed in more detail
later. This literature is in active development and the results are
still tentative. Two emerging patterns are particularly relevant to
the present analysis. First, when a battery ofmultipleGf testswas
administered before and after WM training, strong inter-test
correlations were found as expected, and yet only some tests
showed a significant control-adjusted transfer effect (Colom
et al., 2013; Harrison et al., 2013; Jaeggi, Buschkuehl, Shah, &
Jonides, 2014; Stephenson & Halpern, 2013). This selectivity of
transfer highlights that test scores and gains can index distinct
aspects of the variability across individuals. The high inter-test
correlation presumably reflects the shared Gf loading of scores,
whereas the dissociable gains suggest plasticity in one or more
non-Gf-related factors. This dissociation reinforces the method-
ological caveats discussed above. The second pattern that
emerges from the recent literature is that the tests that did
show significant control-adjusted transfer were tests with a
prominent visuospatial component1 (Colom et al., 2013; Jaeggi
et al., 2014). This raises the possibility that the experimental
intervention in these and earlier studies (e.g., Jaeggi et al., 2008)
may have improved the visuospatial ability rather than the fluid
intelligence of the participants, via the visuospatial demands of
the dual n-back task intended for WM training (Moody, 2009;
Stephenson & Halpern, 2013).

In this article, we focus on Raven's Advanced Progressive
Matrices (APM, Raven et al., 1998) as the paradigmatic
example of the class of matrix-based visual analogy tests that
are commonly used in cognitive enhancement research
(Buschkuehl & Jaeggi, 2010). A Raven problem consists of a
matrix and 8 response alternatives. There are multiple distinct
relations among the entries in a given row or column (Fig. 1,
left). To answer the problem correctly, the participant must
identify the relations and select the response that matches the
pattern. This requires relational reasoning, pattern matching,
working memory, executive control, and other abilities central
to fluid intelligence. However, Raven scores also depend on
test-specific factors, including a prominent visuospatial com-
ponent. These factors are unrelated to Gf and are potential
confounds in cognitive enhancement research. Thus, it is
important to understand them, find ways to measure them,
evaluate their potential to contaminate the assessment of Gf
gains, and correct this contamination.

In this article we open the black box of Raven's APM with
the help of detailed eye-tracking data and a novel method for
scanpath analysis (Hayes, Petrov, & Sederberg, 2011). This rich
data source allows us to investigate the information-processing
mechanisms associated with the observed gain in test scores.
Arguably, this variable—the score gain on a matrix reasoning
test—is the most frequently used and potentially misunder-
stood dependent measure in cognitive enhancement research.

Recently we (Hayes et al., 2011) demonstrated that
approximately 40% of the variance of Raven's APM scores
across participants can be predicted on the basis of individual
differences in eye-fixation patterns. Critical for this successwas
a novel data-processing algorithm called Successor Representa-
tion Scanpath Analysis (SRSA, Hayes et al., 2011) that captures
the statistical regularities of scanpath sequences of arbitrary
lengths. SRSA uses temporal difference learning (Sutton, 1988)
to represent these regularities by a fixed-size matrix called a
successor representation (SR, Dayan, 1993) that can be aggre-
gated across trials and analyzed with standard multivariate
methods such as principal component analysis (PCA, Everitt &
Dunn, 2001). Importantly, the SRs are interpretable: Different
test-taking strategies give rise to characteristic SR patterns that
can be traced in the human data (Fig. 2). SRSA thus provides
unprecedented insight into the role of strategic processing in
matrix reasoning tests.



Fig. 1.Example of the Raven's problem format, relational coding, and trial sequence. Left: The problemmatrix and the 8 response alternatives are shownwith solid lines.
The height of the rectangular box around thematrix subtended 9 degrees of visual angle. Eye fixations were assigned to 10 areas of interest (AOIs): nine for thematrix
cells (top row=1–3,middle=4–6, bottom=7–9) and one for the entire response area. This example item (generated by the authors) requires the extraction of three
relations: distribution of three shapes (diamond, triangle, parallelogram), distribution of three line orientations (0°,45°, 90°), and quantitative pairwise progression of
line numbers (3→ 2→ 1). The vectors above each response were not shown to participants but illustrate the respective relations captured in each possible response.
Right: Each trial had three phases: fixation, solution, and response. Eye movements and verbal protocols were collected during the solution phase. Moving the mouse
cursor out of the fixation box triggered the response phase, duringwhich the problemmatrixwasmasked and the participant clicked on their chosen answer. The inter-
trial interval (ITI) was 200 ms.

Fig. 2. Weight matrices, relational score gain predictions for the full cross-
validated model, and simulated SR differences. The cross-validated model
prediction weight matrix across 35 leave-one-out fits (a) revealed a strong
relationship between systematic scanning and relational score gains across
sessions. The relational score gain was predicted by a separate model that had
no access to the data for the respective individual. Panel b plots the predicted
versus observed relational score gain for all 35 participants (Rcv2 =.32). Panels c
and d were generated using simulated scanpath sequences to highlight
important structure. Panel c shows an idealized difference SR resulting from
simulated sequences with a 90% increase in row-systematicity on session 2.
Panel d shows an idealized difference SR resulting from simulated sequences
with a 20% boost in answer checking on session 2. The x- and y-axes represent
the sender and receiver areas of interest, respectively. R = response area
of interest. SR = successor representation of the regularities in scanpath
sequences.
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Our goal in this article is to apply this powerful new tool to
investigate whether strategy refinement can account for the
test–retest improvement of Raven scores. The answer is a
clear yes. We observed a highly significant practice effect,
replicating published results (Bors & Vigneau, 2003; Denney &
Heidrich, 1990). Approximately 30% of the variance of score
gains across participants could be predicted on the basis of
individual differences in the changes in eye-fixation patterns
as captured by SRSA. Moreover, the latter changes had a clear
interpretation in terms of strategy refinement: Individuals
that moved toward a more systematic scanning pattern at
posttest also tended to improve their scores. Furthermore,
when the strategy-dependent variance was partialled out, the
residual score gains were no longer statistically distinguish-
able from zero. These results indicate that strategy is a critical
latent variable and a strong potential confound that must be
considered whenever matrix reasoning tests such as Raven's
APM are used to measure fluid intelligence gains.

2. Method

Thirty-five university students with normal or corrected-to-
normal vision completed two short-form tests from Raven's
Advanced ProgressiveMatrices, Set II (Raven et al., 1998) on two
separate days approximately aweek apart. The participantswere
paid $6 per hour plus $1 bonus for each correct answer. Half of
them completed items 2, 4, 6, 9 10, 11, 16, 17, 19, 21, 23, 24, 26,
and 29 on the first session and 1, 3, 5, 7, 12, 13, 14, 15, 18, 20, 22,
25, 27, and 28 on the second. The other half completed the same
subsets in the opposite order. The instructions followed the
Raven APMManual guidelines for individual test administration
(Raven et al., 1998). Between the two test sessions, 23
participants completed two additional sessions of paper-and-
pencil training on Raven-like problems (Matzen et al., 2010). The
remaining 12 participants were no-contact controls.

Each trial began with a brief alert sound. A fixation cross
appeared on a 21″ CRT monitor in a darkened room (Fig. 1,
right). After the participant fixated for 1 s, the Raven problem
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appeared and remained onscreen until the participant selected
a response using the mouse. Eye-tracking data were collected
on both test sessions2 using a desktop Eyelink 1000 tracker (SR
Research, 2010). Saccades and fixations were segmented with
Eyelink's standard algorithm using velocity and acceleration
thresholds (SR Research, 2010). Each fixation was assigned to
one of 10 distinct areas of interest (AOIs, see Fig. 1 for details). A
single AOI (labeled R) covered the entire response area so that
the spatial layout of the answers could not be used to decode
the participants' choices. The few (b1%) fixations outside the
10 designated AOIs were ignored.
2.1. Relational item scoring

Most APM items contain multiple distinct relations that
must be extracted to arrive at the correct answer (Carpenter,
Just, & Shell, 1990). However, it is often the case that evenwhen
items are answered incorrectly the participant still extracts
some of the correct relations. On items in which incorrect
answers captured some of the correct relations, we used that
information to infer which relations were successfully extracted
by the participant and were able to increase statistical power
by capturing this information. Seven relational rules were
identified within the APM items: the five rules introduced by
Carpenter et al. (1990) plus two new rules, opacity and unique:

• Constant in a row (CIR): Relation in which an element is the
same across rows, but changes down columns.

• Quantitative pairwise progression (PP): Relation in which an
element increases or decreases down rows or across columns.

• Figure addition or subtraction (ADD/SUBTRACT): Relation in
which an element from one column is added or subtracted
from another column to produce a third column element.

• Distribution of three values (D3): Relation in which three
values from a categorical attribute are distributed across a
row or column.

• Distribution of two values (D2): Relation inwhich two values
from a categorical attribute are distributed through a row,
and the third value is null.

• Opacity (OPACITY): Relation indicating which figural ele-
ments occlude other figural elements when elements overlap.

• Unique (UNIQUE): Used to demarcate special relations that
are specific to an individual APM item.

For every item, each of the eight responses were scored as
a vector indicating whether they contained a given relation
(1) or did not3 (0). See Fig. 1 for an example item coding and
Appendix A for the complete relational coding scheme.With this
form of relational coding, the participant's performance for each
session was measured as the total number of relations extracted
(i.e., the sum of their response vectors) during pre- and posttest,
respectively.
2 Verbal “think aloud” protocolswere also collected but are beyond the scope
of this article. Hayes et al. Hayes et al. (2011) analyzed an orthogonal partition
of the eye-tracking data.

3 Four items (11, 14, 18, 27) had responseswhere partial credit was awarded
for relational capture.
2.2. Successor representation scanpath analysis

We used SRSA (Hayes et al., 2011) to assess changes in
participant strategy by quantifying individual differences in pre-
and posttest eye-fixation patterns. SRSA quantifies regularities
in sequences of eye-fixations using temporal-difference learn-
ing (Sutton, 1988) to construct a matrix called a successor
representation (SR, Dayan, 1993). The key idea behind SRSA is
that upon observing a transition from one AOI to another,
instead of simply updating the transition probability from the
first to the second AOI, we associate the first AOI with the
second AOI and all expected subsequent AOIs based on prior
visits to the second AOI. In this way the SRSA algorithm learns
to predict future scanpaths based on past scanpaths. After
traversing the entire fixation sequence for a trial, the resulting
SR can be conceptualized as having extracted the statistical
regularities in temporally extended scanpaths. Specifically, an
SR matrix contains, for each AOI, the temporally discounted
number of expected future fixations to all AOIs (Dayan, 1993).
Given their uniform size and that they are based on the same set
of AOIs, the SR matrices from different observers and/or trials
can be analyzed using standard statistical methods to identify
significant pattern regularities for various comparisons of
interest. Since we were interested in examining the change in
strategy between pre- and posttest, our present approach
was to use the differences between the pre- and posttest SRs
to predict the difference between pre- and posttest Raven
performance.

The first step in SRSA is to convert each trial scanpath into a
trial SR. Each trial scanpath was defined as the sequence of
fixations across the 10 distinct AOIs (9 cells of the problem
matrix and the response area) on a given trial.4

A successor representation (Dayan, 1993) was calculated for
each trial scanpath, resulting in one 10×10 SRmatrixM per trial
for each participant. Each trial SR matrix is initialized with zeros
and then updated for each transition in the scanpath sequence.
Consider a transition from state i to state j. The ith column of the
matrix—the column corresponding to the “sender” AOI—is
updated according to:

ΔMi ¼ α I j þ γM j−Mi

� �
; ð1Þ

where I is the identity matrix, each subscript picks a column in a
matrix, α is a learning-rate parameter (0 b α b 1), and γ is a
temporal discount factor (0 b γ b 1). The learning rate parameter
α controls the incremental updating and γ controls the amount
of temporal discounting. The latter term is the key to extending
the event horizon to encompass both immediate and long-range
transitions—it includes the discounted future states in the
prediction from the current state. For example, suppose a
participant scans the top row of a Raven problem systematically
from left to right: 1→ 2→ 3→ 1→ 2… Then the successors of
location 1 will include both location 2 and, weighted by γ,
location 3. After traversing thewhole scanpath, the estimated SR
matrix approximates the ideal SR matrix, which contains the
temporally discountednumber of expected future fixations on all
AOIs (rows), given the participant just fixated on any individual
4 Despite wide variability in sequence length, no sequence clipping (Hayes
et al., 2011)was used to attempt to regularize the sequence length for the SRSA
difference analysis.
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AOI (column). Note that the entries in the SR matrix are not
probabilities, they are (discounted, expected) numbers of visits.
When γ is set to zero the SR is equivalent to a first-order
transition matrix and as γ increases the event horizon is
extended farther and farther into the future. Note also that the
learning parameter α does not reflect a cognitive learning rate,
but only the learning rate that optimizes the temporal-difference
learning algorithm.

The second step in SRSAdepends on the question of interest—
in our case the contribution of strategy to Raven APM
improvement. Since we were interested in examining strategy
differences between sessions, the trial SRs were not averaged
across both sessions as theywere in Hayes et al. (2011). Instead,
for each participant a difference SR matrix was computed by
averaging across the session 1 trial SRs and session 2 trial SRs
separately, and then taking their difference (mean session-2 SR
minusmean session-1 SR), resulting in 35 participant difference
SRs. Conceptually, each 10 × 10 difference SR captured the
difference in eye-fixation patterns between pre- and posttest for
the corresponding participant. To reduce the dimensionality of
this 100 feature space and prevent over-fitting, we performed a
principal-component analysis (PCA, Everitt & Dunn, 2001)
of the difference SRs.5 PCA is a standard machine learning
technique for reducing dimensionality by finding the most
informative viewpoints (i.e. variance-maximizing orthogonal
rotations) of a high-dimensional space. The result is a set of
linear orthogonal variables called principal components.
Conceptually, the principal components of the SR differences
represent dimensions of individual differences in fixation
patterns between pre- and posttest. These are expressed
mathematically as orthogonal basis vectors in the 100-
dimensional difference SR space. Each participant was charac-
terized by 20 projections onto this rotated basis. The difference
SR projections were then used as predictor variables in a
multiple linear regression analysis to predict relational score
gain (i.e. the difference in the number of relations extracted,
posttest minus pretest).

The final step in SRSA is to optimize and cross-validate the
model fit between the difference SR projections and relational
score gain. We implemented a two-tier algorithm to maximize
the fit. In the inner loop, it calculated the difference SRs for given
parameters α and γ (Eq. (1)), then calculated the first 20
principal components and the corresponding projections for
each participant, picked the three projections that correlated
most strongly with the relational score gain, and constructed a
linear regressionmodelwith these three predictors.6 In the outer
loop, a Nelder–Mead optimization routine searched for α and γ
that maximized the multiple regression coefficient of the inner-
loop model. To guard against over-fitting, we performed leave-
one-out cross-validation to test the generalization performance
of the two-tier fitting algorithm. We partitioned the data into a
training set of 34 participants and a test set of 1 participant. We
ran our two-tier algorithm on the training set. The parameters α
and γ optimized on the training set were then used to calculate
the SRs for the fixation sequences in the test set. Finally, we
calculated the model's prediction of relational score gain by
5 Following standard PCA practice, we re-scaled each feature so that it had
zero mean and unit variance across the 35 participants.

6 Note for the subgroup analyses (N = 11) a reduced set of 6 principal
components were used.
multiplying the test set difference SR matrix by the weight
matrix estimated from the training set.We repeated this process
35 times, testing on the data from each participant in turn. This
produced 35 predicted relational score gains, each one based on
a model that had no access to the data that was subsequently
used to test it. For all SRSA analyses a cross-validated (Rcv2 ) fit is
reported.

3. Results and discussion

The relational scores varied between 13 and 32 (M= 26.8,
SD = 4.6) at pretest and between 16 and 33 at posttest across
the 35 participants (M= 29.0, SD = 3.7). The relational score
gain (posttest minus pretest) was 2.2 relations on average and
varied across individuals (SD = 3.9, min = −4, max = 11).7

The practice effect was highly statistically significant (t(34) =
3:30, p = .001 (one-tailed), d = .56) and consistent with
earlier reports of practice-induced effects (Bors & Vigneau,
2003; Denney & Heidrich, 1990). Our effect size (d = .56) was
in the upper half of the range of effect sizes typically reported in
the Gf enhancement literature (Melby-Lervåg & Hulme, 2013).
The larger effect sizemay reflect the increased statistical power
of our relational scoring scheme compared to Raven's standard
scoring. Despite this abundant statistical power, the paper-and-
pencil training manipulation had no significant effect relative
to the no-contact control (F(2, 32) = .98; paper-and-pencil
M = 2.6, SD = 4.2; no-contact control M = 1.4, SD = 3.4).
Thus even without training, Raven performance increased
significantly. This illustrates that the mere test–retest proce-
dure is sufficient to induce score gains even when short test
forms are used.

A multiple linear regression was performed using the
difference SR projections from the PCA to predict the relational
score gain for each participant. Utilizing the two-tier fitting
algorithmdetailed earlier, the best fitR2= .56was achievedwith
three principal components, learning rateα⁎=.35, and discount
parameter γ⁎ = .29. As was shown in Hayes et al. (2011), eye-
movement data are susceptible to overfitting and so it is essential
to perform leave-one-out cross validation to test the generaliza-
tion performance. Using cross-validation we were still able to
account for approximately a third of the variance in relational
score gains frompre- to posttest:Rcv2 =.32. Panel a in Fig. 2 shows
the average prediction weight matrix across the 35 leave-one-
out fits and panel b plots the cross-validated predictions against
the observed gains. The average prediction weight matrix
reflects the sum of the principal components (scaled by their
respective regression coefficients) averaged across the 35 leave-
one-out fits.

Just as important as the amount of variance explained by
the difference SRs is the clear interpretation offered by the
predictionweights themselves. The dominant patterns thatwere
observed in the difference SR principal components are reflected
in the prediction weights. In particular, the diagonal box
structure indicates systematic row-wise scanning (cf. Fig. 2a
and c). This finding suggests that a significant portion of the
practice effect was associated with refinements in information
processing strategy whereby participants scanned rows of the
problem more systematically and were less prone to haphazard
7 The number of correctly solved problems increased by 1.5 on average
(t(34) = 3.48, p b .001).
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scanning at posttest. In addition to the diagonal box structure
indicative of a constructivematching strategy, theweightmatrix
in Fig. 2a also has “hot spots” in the bottom-left and top-right
corners. This pattern indicates an increase in the systematic
scanning of cells 1 2 3 (top row) followed by cells 8 and 9 (which
need completion), followed by inspection of the response area
(cf. Fig. 2a and d).

To get a clearer picture of the differences between partici-
pants that improved and those that got worse, we ran separate
cross-validatedmodels for the 11 participants that improved the
most and the 11 participants that performed worse or showed
no improvement at posttest. For both subgroups, the difference
SRSA was able to predict a significant portion of the variance in
relational score (low group Rcv

2 =.30; high group Rcv
2 =.44). The

average prediction weights across the 11 leave-one-out fits are
shown in Fig. 3. The low group prediction weights show more
diffuse weights with no clear diagonal structure as well as some
off-diagonal values, indicative of more haphazard scanning. This
means that participants whose scores stayed the same or
worsened at posttest used the same or less optimal scanning
strategies on session 2 relative to session 1. The high group
prediction weights show the opposite pattern with an even
stronger diagonal box structure than the full model, which
clearly shows a strategically driven improvement in relational
extraction. The bottom-left and top-right weight pattern is also
brought into better focus in this high-improvement group. As
discussed above, this pattern can be generated from a sequential
systematic scanning of the first row, cells 8 and 9, and then the
response area (Fig. 2d). We interpret this sequential pattern as
an indication that participants are checking their answer more
carefully at posttest prior to selecting it. These results are a
further demonstration that strategy refinement between pre-
and posttest can account for changes (gains and losses) in
Raven's APM performance.

To determine whether our practice effect remained after
removing strategic gains in our participants, we performed a
residual analysis to determine whether the significant practice
effectwe observedwould survive in the absence of the strategic
Fig. 3. Comparison of cross-validated prediction weights for high- and
low-improvement groups. Relational score gains were predicted separately
for the eleven highest and eleven lowest improvement participants across 11
leave-one-out fits (low Rcv

2 = .30; high Rcv
2 = .44). Each value was predicted by

a separate model that had no access to the data for the corresponding
individual. Panel (a) shows the average prediction weight matrix for the
low-improvement group and panel (b) for the high-improvement group. A
comparison of the prediction weight matrices shows markedly more diffuse
scanning in the low-improvement group (panel a) and a gain in systematicity
in the high-improvement group (panel b).
improvements that are clearly evident from the SRSA analysis.
In both the entire group (t(34) = .30) and even the high-
improvement subgroup (t(10) = .25), the practice effect was
no longer statistically significant after the SR covariate was
partialled out.
4. General discussion

In this articlewe used eye-trackingdata and a novelmethod
for scanpath analysis to investigate the information-processing
mechanisms associated with practice effects on matrix-based
visual analogy tests. The results showed significant test–retest
gains in the Raven scores (Bors & Vigneau, 2003; Denney &
Heidrich, 1990). Importantly, over 30% of the variance of score
gains across participants could be attributed to refinements
in problem-solving strategies as revealed by characteristic
changes in eye-fixation patterns. Moreover, when the strategy-
related variance was partialled out, the residual score gains
were no longer significant, even in the high-improvement
subgroup. This indicates that strategy refinement is a powerful
determinant of score gains—it controls a major portion of
the variance and can change the substantive conclusion of
an experiment. Consequently, it must be considered carefully
when interpreting score gains on Raven's APM and similar
matrix-based tests.

The central topic in the cognitive enhancement literature is
the topic of transfer across tasks. We acknowledge that, given
the lack of a transfer group in our experiment, our data do not
bear directly on this topic. Nevertheless, the present article
contributes to this literature in two ways: empirical and
conceptual. The empirical contribution is to examine in detail
the information-processing mechanisms underlying the most
frequently used dependent measure in the Gf enhancement8

field—the score gain on a Raven-like matrix test. Until recently
(e.g., Buschkuehl & Jaeggi, 2010; Morrison & Chein, 2011), the
overwhelming majority of positive reports of far transfer of
WM training to fluid intelligence relied exclusively on control-
adjusted score gains on such tests. In effect, our results provide
unprecedentedly detailed information on the likelymechanism
for the score gains observed in the control groups of these
experiments. Further research is needed to investigatewhether
the same mechanism can account for the gains in the WM
training groups as well. The parsimonious hypothesis is that it
does, barring evidence to the contrary.

This hypothesis is also consistent with the longstanding
distinction between the acquisition of skills and the improvement
of abilities (e.g., J. R. Anderson, 2000). The former supports
transfer only between tasks that have procedural and/or
declarative knowledge in common, whereas the latter implies
gains in general mechanisms and capacities that carry the
potential for widespread transfer across diverse tasks. The
difficulty of achieving such broad transfer has long frustrated
educators. Decades of instructional research have demonstrated
that it is hard enough to acquire specific skills but much, much
harder to improve general abilities (J. R. Anderson, 2000). Given
this general pattern, it seemsmuchmore likely that the transfer
of WM training to Raven-like tests (Jaeggi et al., 2008) is due to
8 Of course, the broader field of cognitive enhancement employs a broad
variety of dependent measures.



8 T.R. Hayes et al. / Intelligence 48 (2015) 1–14
skill acquisition—including strategy refinement—rather than
improvement of Gf.

The conceptual contribution of this article is to articulate an
assumption that is logically required for inferring Gf gains on
the basis of test score gains—namely, that only Gf can transfer
across ostensibly different tasks such as n-back and Raven's
APM. Aswe argued in the introduction, this assumption cannot
be taken for granted because non-Gf-related factors can
transfer across tasks too.

Consider motivation as a case in point: Participants who
have invested time and effort to practice a challengingWMtask
are likely to be more motivated on the posttest compared to
control participants. Higher motivation is expected to raise the
test scores in the experimental group evenwhen the treatment
has no effect on fluid intelligence. When a suitably chosen
“placebo” practice made the control participants equally
motivated, their test scores improved by approximately the
same amount in some studies (Melby-Lervå̊g & Hulme, 2013;
Redick et al., 2012). Thus, motivation is an example of a factor
that can sometimes transfer across different tasks and yet is
clearly distinct from Gf. It should be mentioned that some
studies (e.g., (Jaeggi et al., 2011, 2014)) suggest thatmotivation
by itself cannot account for the totality of the improvement on
reasoning tests. This fact, however, does not invalidate our
general methodological point: It cannot be assumed that
nothing except Gf can transfer from a WM task to a reasoning
task. This is a substantive hypothesis that must be articulated
explicitly and supported experimentally (Harrison et al., 2013;
Shipstead et al., 2012).

Our results identify another factor that must be considered
carefully: cognitive strategy. This is consistent with the
evidence that strategy plays an important role in many tasks
(e.g., (Pressley et al., 1990;McCormick,Miller, & Pressley, 1989;
Sternberg & Weil, 1980), tests (Bond & Harman, 1994), and
specifically in Raven's APM (Bethell-Fox, Lohman, & Snow,
1984; Carpenter et al., 1990; Hayes et al., 2011; Vigneau,
Caissie, & Bors, 2006). Hence the correlation between strategy
refinement and Raven score gains is not too surprising.
Nevertheless, it is notable how strong the correlation is and
that it accounts for a significant portion of the improvement in
test scores.

Raven's APM includes a significant visuospatial component in
addition to its well established Gf component. Jensen (1998) es-
timates that 64% of the variance in Raven's scores are attributable
to Gf. Other studies (e.g., Kane et al., 2004; Schweizer,
Goldhammer, Rauch, & Moosbrugger, 2007) yield similar
estimates. Thus, 30–40% of Raven's variance is not related to Gf.
While some of this residual variance is just random noise, some
of it is systematic. In the study of Schweizer et al. (2007), for
instance, there was 11% and 7% variance overlap between
Raven's APM and Horn's (1983) visualization and mental-
rotation scales, respectively. This is not surprising given the
visual nature of the test (Fig. 1). Theoretical (e.g., Carpenter et al.,
1990), and computational (e.g., A. Lovett, Tomai, Forbus, &Usher,
2009) models of Raven's APM also include a prominent
visuospatial component. Analogous considerations apply to
BOMAT (Hossiep et al., 1999) and all other matrix reasoning
tests used in Gf enhancement research.

It is important to dispel a tempting interpretivemistake that
arises at this point. For concreteness, let us assume that 60% of
the variance in Raven's scores are attributable to Gf, whereas
less than 10% are attributable to visuospatial ability. One might
argue on the basis of these figures that the main Gf component
dwarfs the visuospatial “contamination.” This is the rationale
for the widespread acceptance of Raven's APM as a unidimen-
sional measure of Gf (Raven et al., 1998). However, these
figures apply to Raven's scores across individuals, whereas the
dependent measure in WM training studies is the difference
between two scores for the same individual. If Gf is a stable
latent variable, it will contribute equally to the pre- and
posttest scores and this contribution, nomatter how large, will
cancel out in the subtraction. Therefore, the variance of the score
gains can have a radically different composition than the variance
of the scores themselves. Indeed, a meta-analysis of 64 test–
retest studies (te Nijenhuis et al., 2007) found a strong negative
correlation between score gains and the G loadings of test
items.

This illustrates a general limitation of score gains—they can
lead to fallacious conclusions and hence must be interpreted
with great caution. Some prominent methodologists have even
advised against their use altogether: “Gain scores are rarely
useful, no matter how they may be adjusted or refined. …
Investigators who ask questions regarding gain scores would
ordinarily be better advised to frame their questions in other
ways” (Cronbach & Furby, 1970, p. 80).

Given that fluid intelligence is defined as the latent variable
explaining the intercorrelations in performance on a wide
spectrum of tasks (Carroll, 1993; Cattell, 1963; Jensen, 1998;
Martínez et al., 2011; Spearman, 1927), one must employ a
comprehensive battery of tests to evaluate whether Gf improves
withpractice at the latent level—that is, “at a level that represents
the components of the variance common to the set of tasks
indexing a given ability” (Schmiedek, Lövden, & Lindenberger,
2010, p. 2). This methodological imperative is gradually being
acknowledged in the field and there is a growing number of
studies that administer multiple tests (Colom et al., 2013;
Harrison et al., 2013; Jaeggi et al., 2011, 2014; Schmiedek et al.,
2010; Stephenson & Halpern, 2013; von Bastian & Oberauer,
2013). As these studies are too complex to review in detail here,
we will restrict our discussion to findings related to the topic of
visual strategies.

These recent multi-test data suggest the possibility that
the putative gain in fluid intelligence may actually be gain
in visuospatial ability. The study of Stephenson and Halpern
(2013) was designed to test this possibility. It included multiple
training groups practicing purely visual, purely auditory, or dual
versions of the n-back task. The results showed significant
control-adjusted gains on only two out of four Gf tests and only
for participants who had a visuospatial component in training. A
limitation of Stephenson andHalpern's (2013) designwas that it
tested transfer exclusively in the visual modality. By contrast,
Jaeggi et al. (2014) included non-visual tests in the battery of
outcome measures. The results showed significant transfer on
the visuospatial reasoning tests in the visual training and the
auditory training group, but no significant transfer on the verbal
reasoning tests in either training group relative to the control
group. Again, this is consistent with the hypothesis that transfer
might be restricted to the visuospatial domain. Jaeggi et al.
(2014) temper this conclusion with the caveat that the verbal
reasoning measures have lower reliability and hence afford less
statistical power than the visuospatial measures. A third study
(Colom et al., 2013) also administered both visuospatial and
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verbal reasoning tests, and used item response theory (IRT) to
derive indices of Gf and other constructs. No statistically
significant transfer was obtained for any construct, although
therewas a trend forGf (p b .06). This trendwas undermined by
the lack of significant near transfer to the WM construct (cf.
Melby-Lervå̊g &Hulme, 2013; Shipstead et al., 2012). Moreover,
once again the Gf transfer was limited to the visuospatial tests,
whereas the verbal reasoning test improved equally in both
training and control groups. A study with older adults
(Stepankova et al., 2014) also found improvement in visuospa-
tial skills following verbal n-back training. Finally, two studies
(Schmiedek et al., 2010; von Bastian & Oberauer, 2013) report
statistically significant Gf transfer at the latent level. Upon closer
examination, however, these data too are compatible with the
visuospatial hypothesis because the gain in the latent reasoning
factor seems driven by visuospatial tests in both studies. This is
hard to evaluate from von Bastian and Oberauer's (2013) report
because it tabulates the results only in terms of an aggregate
reasoning score that lumps the verbal and visuospatial modal-
ities together. There is a purely verbal reasoning test—
syllogisms—included in the report and the error bars in von
Bastian and Oberauer's (2013) Fig. 5 suggest that it did not
transfer significantly. We should also note that all data are
reported and analyzed in terms of standardized gain scores,
whichmust be interpretedwith caution as discussed above. The
statistical analysis of Schmiedek et al. (2010) is more sophisti-
cated. It employs a latent difference score model (McArdle &
Nesselroade, 1994) that uses factor-analytic techniques to
evaluate gains at the latent level. This study compared younger
and older adults. The results showed a small (effect size d=.19)
but statistically significant transfer effect for the Gf latent factor
in the younger experimental group (relative to younger control)
and nonsignificant transfer in the older experimental group
(relative to older control). At the level of individual tasks in the
younger group, the greatest transfer in the reasoning category
occurred in the visuospatial modality (d = .38), whereas the
verbal modality showed a trend (d = .13) but did not reach
statistical significance (p = .26). Interestingly, reasoning was
also tested in the numerical modality and it did show significant
transfer (d= .33) in the younger group (Schmiedek et al., 2010,
Table 3). The interpretation of these results is complicated by
the fact that both experimental groups practiced a diverse array
of 12 tasks spanning all threemodalities. Thus, it is possible that
the transfer to numerical reasoning is driven by training on a
numerical task, the transfer to visuospatial reasoning is driven
by training on a visuospatial task, etc. Consequently, even this
rich data set does not allow definitive conclusions with respect
to the aforementioned distinction between the acquisition of
skills and the improvement of abilities. In summary, the issues
are complex and the results are not easy to interpret. Still, the
available multi-test data seem consistent with the hypothesis
that the observed Gf gains may be visuospatial gains in disguise.

Turning to the question of mechanism, the strategies for
scanning a Raven's problem matrix (Fig. 1) can be modeled
within a skill acquisition framework. They are a type of
procedural knowledge and, after decades of research, a lot is
known about how such knowledge is represented and acquired
from experience (e.g., J. R. Anderson, 2000). Our discussion
focuses on theACT-R cognitive architecture (Adaptive Control of
Thought–Rational, J. R. Anderson, 2007; J. R. Anderson et al.,
2004) as the flagship example of this multifaceted research
tradition. Procedural knowledge in ACT-R is represented as a
large set of production rules (or productions), each of which can
be summarized in English as an if–then statement. For example,
“if the current goal is to determine whether object X appears on
the top rowof the display then scan the top row from left to right
and search for object X.” Productions are designed to work in a
coordinated manner while remaining relatively independent.
Because of this independence, procedural knowledge can be
acquired and practiced incrementally (J. R. Anderson, 1987;
Taatgen, 2003, 2013). ACT-R has learning mechanisms that
can construct new rules by proceduralization of declarative
knowledge or by recombination of existing rules. Once these
productions are created, a reinforcement-learning mechanism
incrementally updates the system's estimates of their utility.
These estimates provide a principled basis for selecting among
competing productions and thereby choosing among alterna-
tive behaviors (e.g., M. C. Lovett, 1998, 2005). These mecha-
nisms are consistent with neural-network models of action
selection and reinforcement learning in thebasal ganglia (Frank,
Loughry, & O'Reilly, 2001; Jilk, Lebiere, O'Reilly, & Anderson,
2008; Stocco, Lebiere, & Anderson, 2010). A detailed theory of
skill acquisition has been developed in the ACT-R framework. It
accounts for a large body of behavioral (e.g., J. R. Anderson, 1987,
2007; Taatgen, Huss, Dickison, & Anderson, 2008; Taatgen, 2013)
and neuroimaging data (e.g., J. R. Anderson, Betts, Ferris, &
Fincham, 2010). Specifically, it accounts in quantitative detail for
key aspects of skill acquisition in multi-tasking (e.g., Salvucci &
Taatgen, 2008; Taatgen, 2005) and for patterns of eye move-
ments in complex displays (e.g., Lee & Anderson, 2001). ACT-R is
also a proven platform for the development of instructional
software (e.g., Ritter, Anderson, Koedinger, & Corbett, 2007).

These ideas can be applied to the type of visual scanning
strategies relevant to our study. Consider the visual n-back task
(e.g., Jaeggi et al., 2008) as a concrete example. On each trial, a
small square appears in one of several positions in a rectangular
grid. The participantsmust encode the location of the square and
compare it to stored locations from previous trials. Three ACT-R
models of the n-back task have been developed (Juvina &
Taatgen, 2007; Kottlors, Brand, & Ragni, 2012;M. C. Lovett, Daily,
& Reder, 2000), one of which (Juvina & Taatgen, 2007) explicitly
focuses on control strategies and another (M. C. Lovett et al.,
2000) on individual differences in WM capacity. Unfortunately,
thesemodels workwith verbal stimuli such as letters and, to our
knowledge, no model of the visual n-back task has been
developed yet. Nevertheless, it is possible to extrapolate from
the existing models. An ACT-R model of this task would include
various production rules that, when chained together, imple-
ment various strategies for scanning the grid—e.g., by rows, by
columns, outward from the center, etc. It would also include
productions that encode the target location—e.g., as a visual
icon, by associating it to a digit on an imaginary keypad, by
associating it to the letter formed by the empty cells on the
grid, etc. A third set of rules would be needed to retrieve traces
of past trials and compare them to the current one. Important-
ly, each of these unit-tasks can be performed in alternative
ways implemented by competing productions. In ACT-R,
productions with higher utility have a greater chance to fire
on a given trial. The reinforcement learning mechanism
increases the utilities of the productions that fired on correct
trials and decreases those on incorrect trials. Gradually,
productions that lead to success are strengthened and hence



10 T.R. Hayes et al. / Intelligence 48 (2015) 1–14
selectedmore often,whereas productions that lead to errors tend
to drop out. This process is automatic and is a form of implicit
learning. The improvements in accuracy and speed on practiced
tasks are explained in terms of increased reliance on productions
that achieve the goal with higher probability of success and in
fewer steps (J.R. Anderson, 1987; Taatgen et al., 2008).

The learning effects in our data set also have a natural
explanation in the ACT-R framework. On this interpretation,
different visual strategies are implemented by sets of produc-
tions that can be chained together in various combinations.
With practice, the reinforcement learning mechanism updates
the utilities of these productions. This alters both the pattern of
eye movements and the probability of solving the problem
correctly. This common learning mechanism explains the
correlation between the refinement in scanpath patterns and
the gains in Raven's scores (Fig. 2).

Furthermore, the skill acquisition framework provides a
straightforward explanation of the transfer from the visual n-
back task to Raven's APM. Both tasks share a lot of unit-tasks
such as scanning a rectangular grid in search of an object that
matches some description, encoding the location of such
objects on the grid, comparing it to stored locations of other
objects, and so on. Because production rules encode small and
relatively independent bits of procedural knowledge, they
can be used in multiple tasks (Taatgen, 2013). Productions
constructed (e.g., from instruction) while learning one task can
later be used in other tasks. Importantly, the utility of a given
production rule reflects the history of successes and failures of
applying this rule across all tasks it has been tried on. Thus, the
utilities learned from practice on one task will affect the
probabilities with which competing productions are selected
while the system performs another task. This leads to positive
transfer when many productions are beneficial in both
contexts, and to negative transfer when most productions
thatwere beneficial in the first turn out to be detrimental in the
second. In a nutshell, these are some of the key ideas of the
ACT-R theory of skill acquisition (J. R. Anderson, 1987, 2007;
Taatgen et al., 2008). In one recent application of this theory
(Taatgen, 2013), training on a WM control task produced far
transfer on other control tasks. Given its obvious relevance to
WM training and transfer, the skill acquisition framework
deserves to be widely known and discussed in the cognitive
enhancement literature. It is, therefore, extremely unfortunate
that the latter currently makes virtually no references to ACT-R
and only oblique references to skill acquisition research more
generally. This is an instance of the unfortunate but still
widespread estrangement of the comparative and information-
processing traditions in psychology (Cronbach, 1957).

ACT-R provides a solid framework for a mechanistic
characterization of the distinction between skill acquisition
and ability improvement. The model of Lovett et al. (2000) is
particularly relevant in this context because it accounts for
individual differences inWM capacity in terms of the so-called
source-activation parameter W. This is a global architectural
parameter that remains fixed throughout a given run but is
assumed to vary across individuals. Lovett et al. (2000)
estimate it from one task (modified digit span) for a given
individual and then produce zero-parameter fits to the same
individual's performance on another task (n-back). In this
framework, ability improvement can bemodeled as an increase
ofW after practice, whereas skill acquisition can bemodeled as
outlined in the previous paragraph. A very promising direction
for future research is to develop two ACT-R models—one with
modifiable W and fixed production utilities, and another with
fixedW and modifiable utilities. These two models can then be
compared in terms of their fit to behavioral data.

In conclusion, let us recapitulate the diverse strands of
evidence considered in this article. Fluid intelligence (Gf) is
defined as a latent variable that cannot be measured directly
but must be inferred from the intercorrelations in a diverse
battery of tests. There is strong evidence that Gf is highly
heritable. The prevailing opinion among psychometricians,
based on decades of research and disappointments with past
efforts at improvement, is that Gf is a relatively stable trait. The
recentwave of enthusiasm inGf enhancementwas triggered by
reports of score gains on matrix reasoning tests. The interpre-
tation of these results is questionable because no single
test score is identical with Gf and because score gains can be
dominated by factors that play marginal roles in the scores
themselves. The data reported here show score gains on
Raven's APM that are commensurate with the effect sizes
typical of cognitive enhancement studies. Importantly, these
gains can be accounted for in terms of refinements in problem-
solving strategies as revealed by characteristic changes in eye-
fixation patterns. Our data do not address whether the same
mechanism can account for the entire transfer of WM training
to Raven-like tests. However, the newest studies that assessed
Gf via a diverse battery of tests raised the possibility that the
transfermay be restricted to the visual modality. This indirectly
supports the hypothesis that at least some of this transfer may
be driven by refinements in visual scanning strategies. This
hypothesis is also consistent with established theories of skill
acquisition that explain transfer in mechanistic terms. By
contrast, the alternative hypothesis is usually formulated by
means of vague analogies with athletics. We are not aware of a
mechanistic proposal of how n-back training improves WM
capacity. The Gf improvement hypothesis is advanced on the
basis of data showing higher score gains on Raven-like tests
following WM training compared to control. This inference
logically depends on the assumption that Gf gain is the only
possible explanation for such control-adjusted transfer. This
assumption cannot be taken for granted because non-Gf-related
factors can transfer across tasks too. Notably, procedural
knowledge can transfer in subtle ways even between tasks
that seem unrelated on the surface, and especially between
overlapping tasks such as visual n-back and Raven's APM.

On the basis of this converging evidence,we conclude that it
is entirely possible, indeed likely, that the reported transfer of
WM training to Raven-like tests is due at least in part to
refinements in visual scanning strategies. More broadly, the
control-adjusted score gains probably include a contribution from
procedural knowledge tacitly acquired and fine-tuned during the
WM training and later utilized at posttest.

If strategic procedural knowledge transfers across tasks, does
WMtraining induceGf gains that cannot be explained in terms of
strategic transfer? The remainder of this article outlines some
methodological recommendations on how to investigate this
question experimentally in the future.

Themost informative experimental designs are characterized
by two features: focused training interventions in several distinct
groups, and pre- and post testing with a comprehensive suite of
outcome measures. The study of Jaeggi et al. (2014) illustrates a
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well designed set of training interventions: one group practiced
exclusively the auditory n-back task, a second group practiced
the dual (audio and visual) n-back task, and there was also an
active control group. As for the outcomemeasures, it is necessary
to assess three types of outcomes for each participant before and
after training. First, Gfmust be assessed with a battery of tests as
discussed above. It is important to include both visual and non-
visual reasoning tests in this battery. The tacit assumption that
Raven's APM (or any other test, for that matter) equals Gf is too
simplistic. Second, a battery of visual and non-visual WM
measures is needed to assess near transfer (Shipstead et al.,
2012). Third, the visual scanning strategies must also be
assessed, and the tools developed here provide the means to
do so. Our data demonstrated that strategy refinement can
control a substantial portion of the variance and that, therefore,
strategies must be monitored and taken into account in the
analysis. We recommend to administer all visual tests with an
eye tracker and to process the scanpath data with the SRSA
algorithm (Hayes et al., 2011). The resulting successor represen-
tations (or, more parsimoniously, the first few principal
components thereof) should be included to the suite of outcome
measures and used as covariates in the main statistical analysis.

The statistical analysis must estimate latent variables and test
whether Gf improves at the latent level (McArdle & Nesselroade,
1994; Schmiedek et al., 2010). We share Cronbach and Furby's
(1970) reservations about score gains as measures of change,
particularly with respect to a variable that is defined at the latent
level. Fortunately, quantitative psychologists have developed
sophisticated methods for analyzing learning and change at the
latent level.9 A test of the training effect on Gf can be realized by
using a bifactormodel (Yung, Thissen, &McLeod, 1999)withGf as
the general dimension. Themodelmust guarantee that the nature
of the latent variable does not change frompretest to posttest and
that the training effect is an effect on this general dimension. One
method that guarantees this is the Multiple-indicator multiple-
cause (MIMIC) model (Goldberger, 1972) with pretest-versus-
posttest as an external covariate of the general dimension that is
shared by pretest and posttest. The same modeling framework
also makes it possible to estimate effects on more specific latent
variables and to isolate a strategy-specific effect from a genuine
effect on Gf. The Latent difference score model (McArdle &
Nesselroade, 1994) is based on similar principles and has similar
virtues. It has already been applied successfully to cognitive
enhancement data (Schmiedek et al., 2010). A second approach
to guarantee comparability between pretest and posttest is to
analyze the data at the level of individual test items instead of
aggregate scores. Item response theory (De Boeck & Wilson,
2004) can then be used to impose constraints on the item
parameters at pretest and posttest. This approach is developed in
Embretson's (1991) model of learning and change.

Empirical research along these lines has the potential to
identify which aspects of intelligent performance improve after
what kind of practice viawhatmechanisms.We are aware of the
logistical difficulties in collecting so much data per participant,
including eye tracking, and latent-level modeling. However, no
simpler methodology can overcome the interpretative difficul-
ties inherent in demonstrating change in a latent variable in the
9 We thank Paul De Boeck for his expert advice on these methods.
presence of intercorrelated confounds, and pinpointing the
causes for this change. Given the massive societal resources at
stake and the enormous potential benefit, this research burden is
clearly warranted.

Finally, we come full circle to our opening question: Can
intelligence be improved with training? The issues are complex
and much of the current disagreement stems from incompatible
interpretations of the vague and ambiguous term “fluid intelli-
gence.” One important piece of this large puzzle is the ability to
flexibly deploy a judicious variety of cognitive strategies and to
adaptively learn their utilities for various tasks. If this ability is
taken to be part and parcel of Gf then the answer to the opening
question may well be yes. If, however, Gf is interpreted in narrow
neurobiological terms (e.g., Duncan et al., 2000;Gray&Thompson,
2004) then the answer remains elusive. So far we have seen no
conclusive evidence that the brain can be trained like a muscle.
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Appendix A. Relational scoring details

Raven's Advanced Progressive Matrices (APM) is tradition-
ally scored as the total number of items correct. Preliminary
SRSA analysis that used SR differences to predict total number
of APM items correct showed an overall trend for an increase in
systematicity on session 2 (Hayes et al., 2011). To explore this
finding inmore detail, we needed to increase our overall power
to resolve individual differences. The APM at its core tests the
ability to extract relational information from complex, novel
visual environments. Therefore, given that most APM items
contain multiple distinct relations and an assortment of these
relations are found within the 8 possible responses, we were
able to increase our power to resolve individual differences by
inferring the number of relations extracted for both correct and
incorrect responses based on how many correct relations the
chosen response contained.

When itwas possible to tie the relation to a single feature, the
feature to which the relational rule is applied is shown in
parentheses (e.g., shape, shading, orientation, position, figure/
ground, length). Finally, each of the eight possible responses
were scored as either capturing (indicated by a 1) or failing to
capture (indicated by a 0) each relation within an item. Four
items (11, 14, 18, 27) had relations where partial credit
was awarded for relational capture. For instance on item 11,
response 1 was credited with .8 instead of 0 because it captured
the addition relation but lacked a thin outside border around the
figural item. For the other 24 remaining items, each response
either clearly contained or lacked the relation(s). Table A1 lists
the relational score of each response for each item.

Appendix B. SRSA technical details

The successor representation was introduced to the
reinforcement-learning literature by Dayan (1993) and was
developed byWhite (1995). The SR is essentially identical to the
fundamental matrix in the theory of Markov chains (Kemeny &
Snell, 1976). More recently, Gershman, Moore, Todd, Norman,
and Sederberg (2012) identified a formal connection between



Table A1
Raven relational scoring by item. Items are identified by their standard numbers in Raven's Advanced Progressive Matrices. The Relations column lists which rules are
present in the problem matrix and the feature to which that relational rule is applied in parentheses. The last eight columns represent the eight possible responses
(moving left to right, top row is 1 2 3 4 and bottom row is 5 6 7 8) and whether or not they contain the corresponding relation.

Raven no. Relations Resp. 1 Resp. 2 Resp. 3 Resp. 4 Resp. 5 Resp. 6 Resp. 7 Resp. 8

II-1 D3 (shape) 0 1 0 0 1 0 0 1
D3 (orient.) 0 0 1 0 1 0 0 0
CIR (lines) 1 0 0 1 1 0 0 0

II-2 PP (position) 1 0 1 0 0 0 0 0
CIR (lines) 1 1 0 0 1 1 1 1

II-3 CIR (shape) 0 0 1 0 0 0 1 1
PP (position) 0 1 0 0 0 0 1 0

II-4 PP (shape1) 0 0 1 1 1 0 0 0
PP (shape2) 1 0 0 1 0 0 0 0

II-5 PP (shade) 0 1 1 0 1 0 1 0
PP (shape) 0 0 1 1 0 0 0 0

II-6 PP (add) 1 1 1 0 0 0 0 0
PP (subtract) 1 0 0 0 0 0 0 0

II-7 ADD 0 0 0 0 0 1 0 0
II-9 ADD 0 0 0 0 0 0 0 1
II-10 PP (expand) 1 0 0 1 0 0 0 0

PP (length) 0 1 0 1 0 0 0 0
II-11 ADD .5 0 0 0 1 0 0 0
II-12 SUBTRACT 0 0 0 0 0 1 0 0
II-13 D3 (shape) 0 1 0 0 1 1 1 0

D3 (orient.) 1 1 1 0 0 0 1 0
CIR (lines) 0 1 1 0 1 1 0 1

II-14 PP (position) 1 0 0 0 0 .8 0 1
CIR (circle) 1 0 0 0 0 .8 1 0

II-15 ADD (figure) 0 1 0 0 1 1 0 1
ADD (ground) 0 1 1 1 0 0 1 0

II-16 SUBTRACT 0 0 0 1 0 0 0 0
II-17 D3 (form) 0 0 .5 1 0 1 0 0

D3 (shape) 0 0 1 0 0 1 0 1
II-18 D3 (shape) 1 0 1 0 1 .2 1 .2

UNIQUE1 1 1 0 1 1 0 1 0
UNIQUE2 0 1 1 0 0 0 1 1

II-19 UNIQUE1 1 0 1 1 1 0 0 0
UNIQUE2 1 0 1 1 1 0 1 0
OPACITY1 0 1 1 1 0 1 0 1
OPACITY2 1 1 1 0 0 1 1 1

II-20 ADD 0 1 0 1 0 0 1 1
OPACITY 0 1 0 1 1 0 0 1
UNIQUE1 0 0 0 0 1 1 0 1
UNIQUE2 1 1 0 0 0 0 1 1

II-21 D3 (shade1) 0 0 1 0 0 1 0 1
D3 (shape) 1 0 0 1 0 1 0 1
PP (orient.) 0 0 1 1 0 0 0 1
PP (stretch) 0 0 1 1 0 0 0 1
D3 (shade2) 1 1 1 0 0 1 1 1

II-22 D2 0 0 0 0 0 0 1 0
II-23 D2 0 0 0 0 0 1 0 0
II-24 PP (wide lines) 1 0 1 1 0 0 0 0

PP (thin lines) 0 1 1 0 1 1 0 0
II-25 CIC (ground) 1 1 1 1 0 1 1 1

CIR (figure) 0 0 0 0 1 0 1 0
UNIQUE (shade) 0 0 0 0 1 0 1 1

II-26 PP (orient.) 1 1 0 0 0 0 0 0
D3 (shape) 0 1 0 0 1 1 0 0

II-27 D3 (shape) 1 0 1 1 1 0 1 0
D3 (form) 0 0 .3 0 .3 0 1 .3

II-28 D3 (shape1) 0 0 0 1 1 0 1 1
D3 (shape2) 0 1 0 0 1 1 0 0
D3 (number1) 0 1 1 1 1 0 0 1
D3 (number2) 0 1 1 1 1 0 0 1

II-29 D3 (shape) 0 1 1 0 0 1 1 0
PP (orient.) 0 0 0 1 1 1 1 1
D3 (length) 1 1 0 0 0 1 0 1
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the SR and an influential model of episodic and semantic
memory, the Temporal Context Model (e.g. Howard & Kahana,
2002; Sederberg, Howard, & Kahana, 2008).
Weuse a version of the successor representation that differs
slightly from the standard definition (Dayan, 1993; White,
1995). The difference is that, when visiting a state i, our version
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does not include this same visit in the total (temporally
discounted) number of visits to i. Assuming a first-orderMarkov
chain with transition probability matrix T, our SR matrix M is
based on the power series:

M ¼ T þ γT 2 þ γ 2T 3 þ… ¼ T I−γTð Þ−1
: ð2Þ

The standard definition (Dayan, 1993; White, 1995) is
based on the power series I+ γT+ γ2T2 +…= (I− γT)−1.
To revert to the standard formulation of the SR learning
algorithm, the term Ij in our Eq. (1) must be replaced by Ii. In
the special casewhenγ=0, our algorithm tracks the transition
matrix T instead of the identity matrix I.

The proof that the temporal-difference learning algorithm in
Eq. (1) converges to the true successor representationM (White,
1995) is a direct application of more general convergence proofs
about TD(λ) learning in the reinforcement-learning literature
(Dayan, 1992; Jaakkola, Jordan, & Singh, 1994; Sutton, 1988). To
ensure convergence, it is necessary to decrease the learning rate
α as the data accumulate. The technical conditions include:

X∞

n¼0

αn ¼ ∞ and
X∞

n¼0

α 2
nb∞; ð3Þ

where n is the number of observations (Dayan & Sejnowski,
1993, cited in White, 1995).
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