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Sawada T, Petrov AA. The divisive normalization model of V1 neurons: a
comprehensive comparison of physiological data and model predictions. J Neuro-
physiol 118: 3051–3091, 2017. First published August 23, 2017; doi:10.1152/
jn.00821.2016.—The physiological responses of simple and complex cells in the
primary visual cortex (V1) have been studied extensively and modeled at different
levels. At the functional level, the divisive normalization model (DNM; Heeger DJ.
Vis Neurosci 9: 181–197, 1992) has accounted for a wide range of single-cell
recordings in terms of a combination of linear filtering, nonlinear rectification, and
divisive normalization. We propose standardizing the formulation of the DNM
and implementing it in software that takes static grayscale images as inputs and
produces firing rate responses as outputs. We also review a comprehensive suite of
30 empirical phenomena and report a series of simulation experiments that
qualitatively replicate dozens of key experiments with a standard parameter set
consistent with physiological measurements. This systematic approach identifies
novel falsifiable predictions of the DNM. We show how the model simultaneously
satisfies the conflicting desiderata of flexibility and falsifiability. Our key idea is
that, while adjustable parameters are needed to accommodate the diversity across
neurons, they must be fixed for a given individual neuron. This requirement
introduces falsifiable constraints when this single neuron is probed with multiple
stimuli. We also present mathematical analyses and simulation experiments that
explicate some of these constraints.

complex cells; computational modeling; divisive normalization; primary visual
cortex (V1); simple cells

THE PRIMARY VISUAL CORTEX (V1) is the most studied cortical
area. Beginning with the seminal studies of Hubel and Wiesel
(1959, 1962), V1 neurons have been studied extensively in
physiology for half a century (see Albrecht et al. 2003; Andoni
et al. 2013; Angelucci and Shushruth 2013; Ferster and Miller
2000; Fitzpatrick 2000; Hubel and Wiesel 1977; Lamme 2003;
Lennie and Movshon 2005 for reviews). A wide range of
models have been proposed to account for various properties of
V1 neurons at various levels of analysis (see Albrecht et al.
2002; Carandini et al. 1999, 2005; Graham 1992, 2011; Gross-
berg 1988; Hubel and Wiesel 1977; Priebe and Ferster 2008;
Sompolinsky and Shapley 1997 for reviews).

These models of V1 neurons can be classified into three
types: functional, structural, and descriptive (Albrecht et al.
2003, p. 759; see also Herz et al. 2006). A functional model

aims to characterize a variety of response properties within the
context provided by a visual information-processing algorithm.
For example, a simple cell can be modeled approximately as a
linear filter followed by rectification (e.g., Movshon et al.
1978c). Ideally, a functional model can take the stimulus image
as input and calculate the response. This makes it possible to
perform simulation experiments with a functional model by
presenting it with a set of stimuli and examining the predicted
responses. Typically, functional models of V1 neurons involve
various combinations of linear and nonlinear operations de-
fined via algebraic equations. The goal of a functional model is
to characterize the neuron’s response to a given stimulus. All
models discussed in the present article are of this type. Note
that a functional model can be regarded as an intermediate step
toward a structural model for better understanding of the
neuron’s mechanism (Marr 1982, chapter 1.2).

A structural model aims to characterize some aspect of the
biophysical and/or biochemical processing mechanisms in the
early visual system. Typically, it is formulated either as an
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algorithm representing a neural circuit or as a system of
differential equations (see Ben-Yishai et al. 1995; Brosch and
Neumann 2014; Chance and Abbott 2000; Ellias and Gross-
berg 1975; Grossberg 1988; Izhikevich 2007; Kouh and Poggio
2008; Schwabe et al. 2006; Shapley and Xing 2013; Somers et
al. 1995, 1998; Zhaoping 2011 for reviews and examples).
Structural models are beyond our scope here.

A descriptive model applies statistical regression techniques
to summarize and regularize a set of empirical measurements
with a mathematical equation. These measurements can be
characterized by a small number of parameters of this equation.
For example, the tuning bandwidth of a V1 neuron can be
estimated by fitting a Gaussian function to its empirical tuning
curve. A purely descriptive model neither provides theoretical
explanation of the measurements nor infers any mechanism
behind them.

Note that both functional and descriptive models involve
curve-fitting to experimental data. The most important differ-
ence between the two types is that a functional model should be
falsifiable as a scientific theory (Popper 1959; Roberts and
Pashler 2000), whereas a descriptive model does not have to
be. A functional model incorporates some theoretical commit-
ments that constrain the range of data patterns that it can
predict and/or account for. The predictions must follow from
the theoretical commitments of the model and be testable
experimentally.

The present review is based on a functional model of the
static (steady state) properties of simple and complex cells in
V1. The temporal dynamics of the neuronal response is beyond
our present scope. (See, e.g., Albrecht et al. 2002, 2003;
Heeger 1993 for reviews on temporal dynamics; we revisit this
issue in General Discussion.) Most experiments discussed
below used prolonged (steady state) stimuli such as drifting
and/or flickering gratings with relatively long durations (e.g., a
few seconds). Under these conditions, the transient response
triggered by the stimulus onset can be bracketed out of the
analysis to a good approximation, and the most important
dependent variable is the steady-state firing rate of the neuron
as measured by a poststimulus time histogram. The models
discussed below are functional models that take a single
grayscale image as input and produce a single number for each
neuron simulated that we take to be “the response” to a given
stimulus.

An adequate functional model of the V1 neurons should
satisfy the conflicting desiderata of falsifiability (Popper 1959)
and flexibility at the same time. On one hand, the model needs
to be flexible enough to accommodate the variety of V1
neurons with some adjustable parameters. The data reviewed
below were recorded from neurons from different species (e.g.,
cats, New/Old World monkeys, rabbits, rodents, and ferrets)
under different conditions (e.g., anesthesia vs. alertness) and
different experimental protocols. Furthermore, there is substan-
tial variability within a sample of neurons recorded from a
single animal under constant conditions. Clearly, adjustable
parameters are needed to accommodate this diversity. It should
also be noted that it is easy to make the model more flexible by
adding more parameters. On the other hand, if the model
becomes so flexible as to be able to fit any response pattern, it
would become devoid of all empirical content (Roberts and
Pashler 2000). Whereas it might still be useful as a descriptive
formalism for a succinct characterization of properties such as

tuning bandwidths, such a model would not constrain our
theories about the functional organization of the visual system.
To have empirical content, the model must be restrictive
enough to rule out at least some possible data patterns.

There is “a fairly well agreed on standard model of V1
response properties,” usually involving a combination of linear
filtering, half-wave rectification and exponentiation, and re-
sponse normalization (Carandini et al. 2005, p. 10590).
Whereas it is still unknown how well this divisive normaliza-
tion model (DNM) can account for the full complexity of the
V1 population code for time-varying naturalistic stimuli (Ol-
shausen and Field 2005; but see Rust and Movshon 2005), it is
consistent with much of the available data to a good approxi-
mation. The DNM was developed over a number of years,
during which it combined experimental (e.g., De Valois et al.
1982a; Hubel and Wiesel 1959; Movshon et al. 1978c) and
theoretical (e.g., Grossberg 1973) contributions, as well as
interdisciplinary explorations of the correspondence between
the physiological data and the mathematical formalisms (e.g.,
Albrecht and Geisler 1991; Carandini and Heeger 1994;
Heeger 1992b). Versions of this model have been applied to a
broad spectrum of data ranging from single-cell recordings
(see, e.g., Albrecht et al. 2003; Carandini and Heeger 2011;
Heeger 1992b for reviews) to multielectrode population re-
cordings (e.g., Busse et al. 2009; Goris et al. 2009; Ruff et al.
2016), EEG brain imaging data (e.g., Candy et al. 2001; Zhang
et al. 2008), fMRI brain imaging data (e.g., Boynton et al.
1999; Brouwer and Heeger 2011; Moradi and Heeger 2009),
and psychophysical data (e.g., Boynton and Foley 1999; Foley
and Chen 1999, 1997; Itti et al. 2000; Malo and Laparra 2010;
Meese et al. 2007, 2009; Meese and Holmes 2002; Neri 2011,
2015; Olzak and Thomas 1999, 2003; To et al. 2010).

Unfortunately, there is no standard formulation of the DNM
as a functional model. Various authors and publications cus-
tomized the DNM by using different mathematical expressions
and idiosyncratic parameterizations. There is a clear family
resemblance across these model variants—the verbal descrip-
tion quoted above summarizes the core DNM ideas—but
allowing such customization makes the DNM more flexible
and thereby weaker as a scientific theory. The customization
introduces hidden degrees of freedom because it involves a
choice among a variety of formulations. Also, many of the
published DNM variants are formulated in terms of variables
that characterize the stimuli in particular experiments (e.g., the
luminance contrasts of two gratings in two spatially separate
regions). This practice makes those DNM variants hard to
generalize to novel stimuli.1

Here, we propose a standard formulation of the DNM as a
functional model that takes images as inputs, test its validity
with respect to a comprehensive suite of empirical phenomena
(listed in Table 1), and identify falsifiable predictions of the

1 It was also pointed out that “[m]ost models of normalization are descrip-
tive (e.g., Carandini and Heeger 2011)” (Ruff et al. 2016, p. 1375). For
example, it can be fitted to physiological data with the intention of using the
best-fitting parameter values as inputs for subsequent statistical analysis. Note
that the lack of standard formulation compromises the DNM’s usefulness as a
descriptive model too, because it is difficult to compare parameter values that
were fitted with different model variants. Instead, the DNM with the customi-
zations can be regarded as a descriptive language (see Dzhafarov 1993) of
physiological results. Namely, it merely describes some trend observed in
results of a physiological experiment as additive, subtractive, multiplicative, or
divisive components of the DNM or even as its new component.
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DNM based on mathematical analysis of the standard formu-
lation. The key idea that allows the identification of falsifiable
predictions is this: While the model parameters may have to be
adjusted flexibly to accommodate the diversity across neurons,
they must be fixed for a given individual neuron. This intro-
duces falsifiable constraints when this single neuron is probed
with a judiciously chosen suite of stimuli. The standardization
also allows us to unify and consolidate a large amount (though
certainly not all) of DNM-related research scattered across
dozens of journal articles spanning decades of experimental
and theoretical development.

This article is organized around a series of figures with
side-by-side comparisons between data patterns illustrating
various properties of real V1 neurons and the corresponding
patterns simulated with the DNM. On the basis of side-by-side
examination of dozens of phenomena, we identify relationships
between certain model parameters and the phenomena. These
relationships in turn generate falsifiable predictions. This type
of analysis focuses on the qualitative patterns that can be
produced by a model under a given parameterization (Pitt et al.
2006). It contrasts with the typical approach in the experimen-
tal literature where, with some notable exceptions (e.g., Tad-
mor and Tolhurst 1989), one or more models were compared in
terms of their quantitative fits to physiological data pertaining
to a single phenomenon.

Our review is of potential interest to several groups of
readers. First, readers interested in the neurophysiology of
simple and complex cells in V1 will find a systematic series
of figures with representative data from classic experiments, as
well as their interpretation under the DNM. Single-cell data
published over a 50-year span were digitized from select
figures in the original reports and are replotted here. Second,
readers interested in functional modeling of the early visual
system will find systematic exposition and motivation of the
DNM, as well as its empirical grounding. Third, expert mod-
elers of the early visual system will find mathematical deriva-
tions and simulation experiments that identify novel falsifiable
predictions of the DNM. Last but not least, modelers who
need an off-the-shelf front end to a larger model (e.g.,
Jacobs 2009; Petrov et al. 2005, 2006) will find a general-
purpose parameterization of the DNM and a standard pa-
rameter set (Table 2) that is consistent with almost all
phenomena listed in Table 1. The model was implemented
as a software program for MATLAB (The MathWorks
2015). This software takes a static grayscale image as input
and produces a matrix of firing rate responses for a population
of DNM neurons centered on a single retinal location and tuned
for a range of orientations and spatial frequencies.

The rest of the article is organized as follows: Models
presents the DNM, its proposed parameterization, and compu-
tational implementation. Simulation Experiments reviews over
two dozen empirical phenomena and interprets them through
the lens of the DNM. It also reports mathematical analyses,
simulation results, and some novel predictions. Finally, there is
a General Discussion followed by mathematical appendices.

Models

The essential components of the divisive normalization
model (DNM) are the linear filters, the static nonlinearities, and
divisive normalization. These components are described be-

low, but, before this is done, we must acknowledge an impor-
tant preprocessing step, namely, light adaptation (or luminance
gain control). The adaptation is primarily accomplished in the
retina (Shapley et al. 1993; Shapley and Enroth-Cugell 1984;
see also Virsu et al. 1977; Virsu and Lee 1983). It matches the
limited dynamic range of the neurons to the locally prevalent
luminance. The DNM does not model this light adaptation
explicitly. It simply assumes it has been incorporated into the
encoding of the input images. This assumption is justified in
situations when the stimuli are embedded in a large uniform
gray background and when the visual system has adapted to the
baseline luminance level Lb. The input to the model is a matrix
I(x, y) of local contrast around this fixed baseline:

I�x, y� � �L�x, y� � Lb� ⁄ Lb (1)

where L(x, y) is the luminance at coordinates x and y. In this
notation, a sinusoidal grating with contrast c modulates be-
tween Imin � �c and Imax � �c and has zero mean. The
maximal possible contrast (cmax � 1) of a grating is attained
when the lowest intensity is zero and the highest intensity is
twice the mean.

Linear rectification model of simple cells and energy model
of complex cells. The majority of V1 neurons respond selec-
tively to a variety of stimulus features including position, size,
orientation, and spatial frequency (e.g., De Valois et al. 1982a;
Hubel and Wiesel 1959, 1968; Pollen and Ronner 1982;
Watkins and Berkley 1974). A typical V1 neuron responds to
stimulation within a circumscribed region called the (classical)
receptive field (RF). Different neurons have RFs centered on
different positions, and V1, as a whole, forms a topographic
map (e.g., Schwartz et al. 1985). This population code is
beyond our scope. We are modeling a representative indi-
vidual neuron. Note that in this article the origin of the xy
coordinate system is placed conventionally at the center of
the neuron’s RF.

Hubel and Wiesel (1959, 1962) introduced the influential
distinction between simple and complex cells in V1. According
to their original definition (Hubel and Wiesel 1962), simple
cells have four characteristic properties: 1) distinct excitatory
(bright-excitatory) and inhibitory (dark-excitatory)2 subregions
within the RF; 2) spatial summation within a given subregion;
3) mutual antagonism between subregions; and 4) responses to
novel stimuli can be predicted to a good approximation on the
basis of the spatial arrangement of the subregions. These four
properties would be expected from a linear spatio-temporal
filter, and they would motivate the application of linear sys-
tems theory (e.g., Lathi 2005) to the study of spatial vision
(e.g., De Valois and De Valois 1988; Graham 1989; Maffei and
Fiorentini 1973; Shapley and Lennie 1985). Quantitative tests
have identified a subpopulation of V1 neurons that exhibit
these linear properties to a good approximation (e.g., Andrews
and Pollen 1979; Movshon et al. 1978c; Pollen and Ronner

2 The term “inhibitory” is based on Hubel and Wiesel’s (1959, 1962)
observation that the response of a simple cell was decreased by stimulation
of the subregion with a light spot (see also Andrews and Pollen 1979 for a
study using a light bar). However, subsequent studies (e.g., Glezer et al.
1982; Kulikowski and Bishop 1981; Kulikowski and Vidyasagar 1986;
Movshon et al. 1978b; Tadmor and Tolhurst 1989) showed that the
response can be increased by stimulating such subregions with a dark bar.
Following DeAngelis et al. (1995), we use the terms “bright-excitatory” and
“dark-excitatory” throughout this article.
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1982; see Albrecht et al. 2003 for review). This linear systems
approach is reinforced by a rich body of psychophysical data
(e.g., Campbell and Robson 1968; Cornsweet 1970) and theory
that supports the existence of channels selective for orientation
and spatial frequency (De Valois and De Valois 1988; Graham
1989). However, two caveats should be kept in mind here
(Albrecht et al. 2003). First, the match between the measured
single-cell responses and the linear systems predictions is
always approximate, never exact, because they are systematic
nonlinearities (discussed below). Second, the simple vs. com-
plex cell distinction probably denotes the end points of a
continuum rather than a sharp dichotomy (see The Stimulus
Drive for a discussion). These caveats notwithstanding, this
distinction has proven its theoretical utility and is widely used
in V1 models.

The spatial layout of simple-cell RFs has been mapped out
with local stimulus probes (e.g., light and dark spots and bars)
and the reverse correlation method (see RECEPTIVE FIELDS OF

SIMPLE CELLS). The RF of a typical simple cell consists of
alternating bright- and dark-excitatory subregions (De Valois
et al. 1982a; Hubel and Wiesel 1962; Maffei and Fiorentini
1973; Sengpiel et al. 1997). This two-dimensional (2D) spatial
pattern can be approximated well by the Gabor function in Eq.
2 (Daugman 1980, 1985; Field and Tolhurst 1986; Jones and
Palmer 1987a, 1987b; Kulikowski et al. 1982; Marĉelja 1980;
Ringach 2002). Mathematically, a Gabor function GXYF��(x,y)
is a product of a Gaussian envelope and a sinusoidal grating:

�GXYF���x, y� � exp��4ln2� x„2

hx„
2

�
y„2

hy„
2	
cos�Fx„ � ��

x„ � �y � Y�sin� � �x � X�cos�

y„ � �y � Y�cos� � �x � X�sin�
(2)

where x and y (degrees of visual angle, °) are positions across
the image and X and Y define the center of the RF.3 The grating
has spatial4 frequency F (cycles/°, cpd), phase �, and orien-
tation �. The parameters hx„ and hy„ control the full width at
half height (FWHH) of the Gaussian envelope along the
orthogonal and parallel directions as shown in Fig. 1. See
APPENDIX A for more details.

The alternating arrangement of bright- and dark-excitatory
RF regions makes the simple cell selectively responsive (or
tuned) to the orientation and frequency of the stimuli. It is very
informative to probe the neuron with a battery of sinusoidal
gratings covering a range of orientations and frequencies. Such
probing in the frequency (Fourier) domain complements the
local probing in the space domain for simple cells and is
necessary when studying complex cells because their RFs
cannot be segmented into bright- and dark-excitatory subre-
gions by means of local probes. In this study, we consider only

excitatory neurons in V1 that are tuned for both orientation and
spatial frequency (e.g., De Valois et al. 1982a; see ORIENTATION

AND SPATIAL-FREQUENCY TUNING for further references).5

Figure 2 illustrates typical empirical6 tuning curves with
respect to orientation and spatial frequency. For example, the
tuning curve in Fig. 2A has a peak at 0° and FWHH of ~45°,
which measure this neuron’s preferred orientation and the
orientation bandwidth, respectively.

With a perfectly linear filter (Lathi 2005), the response
profile in the space domain completely determines the tuning in
the frequency domain (via the Fourier transform) and vice
versa (via the inverse Fourier transform). Specifically, consider
a linear filter whose weighting function is a Gabor patch in the
space domain (Eq. 2). The tuning function of this filter is a
bivariate Gaussian in the frequency domain (Graham 1989,
p. 85). Moreover, for a given frequency F, the orientation
bandwidth h� (in °) is inversely proportional to the size hy„ of
the patch along the direction parallel to the grating:

hy„h�F �
720

�2 ln2 � const (3)

where the constant 720ln(2)/�2 comes from the conversion
from degrees to radians and from FWHH to standard deviation.
See APPENDIX A for details. The reason for this inverse relation-
ship is intuitively clear from Fig. 1: To estimate the stimulus
orientation with high precision (low h�), it is necessary to have
a large baseline for measurement along the length of the bars.
An analogous inverse relationship exists between the fre-
quency bandwidth hf and the perpendicular size hx„. Intuitively,
to estimate the stimulus frequency with high precision (low hf),
it is necessary to be able to “count” many cycles within the
width of the filter. It is more convenient to express the fre-
quency bandwidth hf in octaves on a log2 scale instead of linear
units. The exact relationship (derived in APPENDIX A) is

3 In this article we concentrate on an individual neuron and set the origin of
the xy coordinate system at the center of its RF. Thus, X � Y � 0 by
convention. These indices are included in Eq. 2 (and the MATLAB imple-
mentation) to support multicellular retinotopic maps.

4 A time-varying stimulus such as a drifting grating also has temporal
frequency. As the temporal properties are beyond our scope, however, the term
“frequency” refers to spatial frequency throughout this article unless explicitly
stated otherwise.

5 The proportion of V1 neurons that are tuned for orientation and spatial
frequency varies across species. For example, orientation selectivity is ob-
served in almost all excitatory neurons in cat V1 but relatively few in mouse
V1 (Tan et al. 2011). Also, the proportion of orientation-selective neurons in
macaque V1 depends on the cortical layer (even sublayers in layer 4) from
which they are sampled (Gur et al. 2005; Ringach et al. 2002).

6 Published physiological data were captured from their respective figures
with PlotDigitizer (http://plotdigitizer.sourceforge.net) and replotted here in a
unified format.
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  = 90°

hy̆

hx̆
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0° +1°−1° x
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0° +1°−1° x
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+1°

−1°

O O

Fig. 1. Examples of Gabor patches with phase � � 0° and � � 90°, vertical
orientation (� � 0°), and spatial frequency F � 2 cpd (Eq. 2). The parameters
hx̆ and hy̆ control the full width at half height (FWHH) of the Gaussian
envelope along the directions that are perpendicular and parallel to the grating,
respectively.
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hx„ �
�2hf � 1�2ln2

�2hf � 1��F
(4)

Real neurons are never perfectly linear, but the orientation-
and frequency-tuning properties of simple and complex cells
are in approximate qualitative agreement with the predictions
of the linear theory. “The two-dimensional tuning curves are
mostly moderately elongated along a radial axis [in the Fourier
plane], and extreme or amorphous shapes (e.g., sausages,
amoebas) are rare” (Lennie and Movshon 2005, p. 2020).
Typically, the preferred orientation does not depend much on
the frequency of the test grating, and vice versa (Webster and
De Valois 1985). This means that the joint orientation-by-
frequency tuning curve can be modeled as the product of two
orthogonal dimension-specific curves (cf. Fig. 2), which is in
agreement with the linear prediction.

The output ES of a linear filter to a stimulus image I is a
scalar quantity equal to the dot product7 of the image with the
weighting function (WF), which determines the properties of

the filter. All models discussed in this article use Gabor WFs
(GXYF��; see Eq. 2), and the filter can be written as

ES:XYF���I� � � I�x, y�GXYF���x, y�dxdy (5)

The center XY of the Gabor patch determines the center of
the receptive field (RF) of the filter (in image space), the
frequency F of the patch determines the preferred frequency of
the filter (in Fourier space), and analogously for the orientation
� and phase �. Of all images with a given energy (i.e., fixed
variance of the intensity distribution), the output is maximized
by the stimulus that exactly matches the WF (Cauchy-Schwarz
inequality; Encyclopedia of Mathematics, https://www.
encyclopediaofmath.org//index.php?title�Cauchy-Schwarz_
inequality). In this sense, the preferred stimulus of the filter in
Eq. 5 is the Gabor patch in Eq. 2. The absolute value of the
output can be interpreted as the similarity between the stimulus
and the preferred template, and the sign indicates whether the
two are in phase or out of phase. (An image is in phase with a
WF when the bright spots on the image line up with the
bright-excitatory regions of the WF and the dark spots line up
with the dark-excitatory regions; it is out of phase if the
alignment is the other way around.)

The linear rectification model of a simple cell consists of a
linear filtering stage (Eq. 5) followed by half-wave rectification
(Eq. 6). The linear stage is motivated by the extracellular
recordings surveyed above, as well as by intracellular record-
ings (e.g., Jagadeesh et al. 1993), suggesting that the fluctua-
tions in membrane potential of simple cells around the resting
potential can be modeled quantitatively in terms of linear
summation of synaptic potentials. For our purposes, the output
of the linear stage is referred to as the stimulus drive ES to the
simple cell. The stimulus drive can be positive or negative, but
the firing rate of a real neuron is always nonnegative. This is
modeled by a rectifying nonlinearity

RLN�I� � MLN<ES:XYF���I�= (6)

where RLN is the response of the cell (in spikes/s, sps) and MLN
is a parameter that, under certain calibration assumptions,
defines the maximum firing rate to a preferred grating. The
half-wave rectification operator <E= � max�0,E� passes posi-
tive values unchanged and converts negative values to zero.

The weighting function of a linear neuron coincides with its
receptive field. Consequently, the terms WF and RF are some-
times used interchangeably in the literature. We keep them
distinct because the corresponding referents are distinct for
nonlinear models. WF is a theoretical term that is defined only
with respect to a model with a linear filtering stage (Eq. 5). By
contrast, the RF is defined operationally by systematically
probing the responses of the (real or simulated) neuron accord-
ing to some specific experimental protocol.8 The RF is often

7 I and GXYF�� are treated as (long) vectors in the computation of the dot
product.

8 Strictly speaking, the term “receptive field” is used in two distinct senses
in visual neuroscience. The first refers to the region of the visual field where
stimulus presentation induces changes in firing rate. In this sense, we distin-
guish points inside or outside the RF, measure the RF diameter, etc. The
second sense refers to a function that maps points of the visual field to firing
rates (see Figs. 23 and 24 for examples). Both senses are used in this article;
the intended meaning is usually clear from the context. Note that the opera-
tional characterization of the RF always involves some experiment-specific
assumptions (see SIZE TUNING and RECEPTIVE FIELDS OF SIMPLE CELLS for
references and details).
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Fig. 2. A: a representative orientation tuning curve—in this case from a V1
complex cell of an anesthetized cat. Replotted from Fig. 1 in Rose and
Blakemore (1974). B: orientation tuning curves of 3 models introduced in the
main text: linear rectification (Eq. 6), exponential (Eq. 11), and divisive
normalization (DNM, Eq. 15). Each model neuron was probed with gratings
with 100% contrast, 5.76° size, and the neuron’s preferred phase and fre-
quency. All 3 models used the same weighting function for the linear filtering
stage and DNM’s standard bandwidth parameters (see Standard parameter
set). The stimulus drive exponent of the exponential model (nEx � nn � 2) was
set to its counterpart in the standard DNM parameter set (Table 2). C: a
representative spatial-frequency tuning curve—in this case from a V1 simple
cell of an anesthetized cat. Replotted from Li and Li (1994, Fig. 7C). D:
spatial-frequency tuning curves of the 3 models described in C. The grating
probes had 100% contrast, 5.76° size, and the neuron’s preferred phase and
orientation. Dotted lines depict the full and half heights of the curves. (See
phenomena 13 and 14 in Table 1.)
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smaller than the WF in models involving nonlinearity and/or
suppression as discussed below.

Complex cells differ from simple cells because of the ab-
sence of distinct bright- and dark-excitatory subregions in their
RFs (Hubel and Wiesel 1962; Watkins and Berkley 1974).
Complex cells are relatively invariant to the phase of the
stimuli (De Valois et al. 1982a; Ibbotson et al. 2005; Maffei
and Fiorentini 1973; Movshon et al. 1978c; Sengpiel et al.
1997). For example, they respond indiscriminately to light and
dark bars, as long as the bar stands out from the gray back-
ground. They are sensitive to the stimulus orientation and
spatial frequency, however, and their tuning curves are very
similar to those of simple cells (De Valois et al. 1982a).

Complex cells are usually modeled in terms of several linear
filters whose outputs are nonlinearly transformed and then
combined (see Bair 2005; Martinez and Alonso 2003; Mechler
and Ringach 2002; Spitzer and Hochstein 1988 for reviews).
“A key feature of these models is that the underlying linear
filters—not the later nonlinearities—determine the set of stim-
uli to which the neuron will respond” (Lennie and Movshon
2005, p. 2023). The most influential model of this class is the
energy model (Adelson and Bergen 1985; Pollen and Ronner
1983; Spitzer and Hochstein 1985; Watson and Ahumada
1985):

EC:XYF��I� � �ES:XYF�,0°�I�2 � ES:XYF�,90°�I�2 (7)

where ES:XYF�,0° and ES:XYF�,90° are linear filters (Eq. 5) whose
WFs have identical parameters XYF� but orthogonal phases.
The energy model (Eq. 7) produces phase-invariant output EC
via the trigonometric identity sin2� � cos2� � sin2� �
sin2(� � 90°) � 1. The firing rate RLN(I) of the complex cell
can be modeled by substituting EC for ES in Eq. 6 (see, e.g.,
Emerson et al. 1992; Heeger 1992b; Lehky et al. 2005; Szul-
borski and Palmer 1990 for similar formulations). It is tempt-
ing to interpret Eq. 7 as a formalization of the hierarchical
feedforward simple-to-complex arrangement proposed by
Hubel and Wiesel (1962). The physiological evidence, how-
ever, is more consistent with a nonhierarchical interpretation in
terms of a continuum from strongly phase-sensitive (simple)
cells to nearly phase-invariant (complex) cells (Bair 2005; De
Valois and De Valois 1988; Martinez and Alonso 2003;
Mechler and Ringach 2002). For our present purposes, it
suffices to treat Eq. 7 as a mathematically convenient func-
tional description of the stimulus drive EC to complex cells.

As a notational convenience, it is often useful to bundle the
long subscripts into a tuning preference vector

Pi � XiYiFi�i�i� (8)

where the phase �i can take a special nonnumerical value to
indicate a phase-invariant (complex) cell. In this notation, an
image I induces stimulus drive EPi

�I� to a neuron with index i
and preferences Pi:

EPi
�I� ��ES:XiYiFi�i�i

�I� for a simple cell,

EC:XiYiFi�i
�I� for a complex cell

(9)

Note that EPi
is a linear operator for the simple cell. That is, for a

fixed i, EPi
�I' � I�� � EPi

�I'� � EPi
�I�� for any pair of images I= and

I� and EPi
�cI� � cEPi

�I� for any number c 	 0. The latter equality
also holds for the complex cell.

The linear rectification model RLN�I� � MLN<EPi
�I�= pro-

vides a quantitative account of the selectivity of V1 neurons’
responses to bars, edges, and gratings. Moreover, it provides “a
credible account of the responses to a variety of more compli-
cated targets, including checkerboards (De Valois et al. 1979),
random dot textures and Glass patterns (Smith et al. 2002)”
(Rust and Movshon 2005, p. 1647). It dominated the field until
the mid-1980s and set the stage for subsequent research that
uncovered systematic departures from linearity. Various types
of nonlinear operations have been considered, including
thresholding

RTh�I� � MTh<
Th � EPi
�I�= , (10)

exponentiation

REx�I� � MEx<EPi
�I�=nEx, (11)

and hyperbolic ratio transformation (Eq. 12 in Hyperbolic ratio
model), where MTh, 
Th, MEx, and nEx are free parameters and
<·= is the rectification operator from Eq. 6. Note that these
nonlinear operations are not mutually exclusive and the divi-
sive normalization model incorporates them into Eq. 15 below
(following Heeger 1992b). The hyperbolic ratio model is
discussed next, and exponentiation and thresholding is dis-
cussed in Summary and discussion.

Hyperbolic ratio model. The contrast response function
(CF9) describes how a neuron’s response depends on the
contrast of the stimulus. Consider a family of stimuli
{cIT}c�[0,1] based on the same template image IT but varying in
contrast c. We assume throughout this section that the template
IT is normalized so that its contrast is 1.0 (cf. Eq. 1). The CFs
of neurons have been measured for various templates, cortical
areas, species, and conditions (e.g., Albrecht et al. 2002; Albrecht
and Geisler 1991; Albrecht and Hamilton 1982; Carandini et al.
1997; Dean 1981; Derrington and Lennie 1984; Geisler and
Albrecht 1997; Li and Creutzfeldt 1984; Sclar et al. 1990; see
Albrecht et al. 2003; Carandini et al. 1999; Graham 2011; Heeger
1992a; Lennie and Movshon 2005 for reviews). Furthermore, as
Albrecht et al. (2002) pointed out, “although there is a great deal
of heterogeneity from cell to cell, it is possible to provide a
description of the basic properties of the contrast response func-
tion that applies to the overwhelming majority of neurons: As the
contrast increases from zero, the response increases in an accel-
erating fashion, remains dynamic over some limited range of
contrasts, and then saturates” (p. 888). Figure 3 illustrates the
characteristic sigmoidal shape of a typical CF.

The hyperbolic ratio model has been widely used as a
descriptive model to fit these data (e.g., Albrecht and Hamilton
1982; see also Graham 2011; Legge and Foley 1980; Naka and
Rushton 1966).10 The response RHB of this model to a stimulus
cIT with contrast c and template IT is

RHB�cIT� � MHB�IT�
cnHB

�HB
nHB � cnHB

(12)

where the semisaturation contrast parameter �HB expresses the
contrast of the image that produces one-half of the saturation

9 The abbreviation CRF should be avoided because it tends to be misread as
“classical receptive field.”

10 The function R(c) � cn/(�n � cn) is sometimes called the Naka-Rushton
function. In biochemistry, it is called the Michaelis-Menten function and is the
centerpiece of an influential model of enzyme kinetics.
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level MHB(IT).11 Note that the latter depends on the template IT.
When contrast is plotted on a log axis, the exponent nHB
controls the slope of the CF and �HB controls its location (Fig.
4; Graham 2011; see APPENDIX B for properties of the CF plotted
on a linear contrast axis). Note also that the response to a
stimulus with zero contrast (i.e., a uniform gray field) is
assumed to be zero.

The hyperbolic ratio model (Eq. 12) involves two nonlinear
operations: exponentiation and division. The former accounts
for the accelerating shape of the CF at low contrasts—that is,
for the fact that the CF slope gets steeper and steeper as the
contrast increases from zero. Using the logarithmic scale of the
contrast c, the maximal slope is nHB/4 at c � �HB. The divisive
operation of the hyperbolic ratio model saturates the CF at high
contrasts. The CF of the hyperbolic ratio model with these
properties can represent shapes of CFs of real neurons well.
Note that the asymptotic limit c¡� has no physiological
interpretation because the luminance contrast c cannot be
greater than 1 (Eq. 1).

Equation 12 predicts that all CFs measured for the same
neuron are multiplicatively scaled replicas of each other across
the entire contrast range. That is, the ratio of the neuron’s
responses to images with identical contrast but different tem-
plates IT= and IT� is invariant with respect to c:

RHB�cIT'�
RHB�cIT��

�
MHB�IT'�
MHB�IT��

(13)

The empirical CFs (Fig. 3) of typical simple and complex
cells in V1 are consistent with this prediction in many cases
(e.g., Albrecht and Hamilton 1982; Carandini et al. 1997; see
CONTRAST RESPONSE FUNCTION for further references). In partic-
ular, when IT= and IT� are gratings with different orientations,
Eq. 13 accounts for the approximate contrast invariance of the
orientation tuning curves of typical V1 neurons (e.g., Sclar and
Freeman 1982; Skottun et al. 1987; see ORIENTATION AND SPATIAL-
FREQUENCY TUNING for further references). Note, however, that
the spatial-frequency tuning curves of many V1 neurons have
a slight but systematic dependence on contrast (e.g., Albrecht
and Hamilton 1982; Skottun et al. 1987; see phenomenon 17 in
ORIENTATION AND SPATIAL-FREQUENCY TUNING for further
discussion).

Cortical neurons have a limited dynamic range, and their
firing rates saturate at high contrasts (e.g., Albrecht and Ham-
ilton 1982). It is important to note that this saturation is not
simply an output nonlinearity because it occurs at a fixed
contrast rather than at a fixed response level for different
stimuli. Consider the CFs plotted in Fig. 3C, for example. The
responses to gratings whose frequency is 0.34 cpd saturate
below 10 sps even though the same neuron can sustain firing
rates above 30 sps when stimulated at its preferred frequency
(0.75 cpd). Each neuron is characterized by an entire family of

11 The semisaturation contrast is typically denoted c50 in the hyperbolic ratio
literature. Our notation �HB disambiguates it from its counterparts in Eq. 14
and Eq. 15.
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Fig. 3. Representative contrast response functions (CFs). A: responses of a
simple cell to drifting sinusoidal gratings spanning a range of contrasts at 2
orientations (see key). Replotted from Carandini et al. (1997, Fig. 4B, anes-
thetized macaque; error bars � 	SE). B: CFs of the DNM neuron with default
parameters, probed with gratings with the neuron’s preferred frequency (1.0
oct) and orientations shown in key. The size of the stimuli was equal to the
measured RF diameter (0.81°). C: responses of a V1 neuron to drifting
sinusoidal gratings with the neuron’s preferred orientation and spatial frequen-
cies shown in key. Replotted from Albrecht and Hamilton (1982, Fig. 7A). D:
CFs of the divisive normalization model (DNM, defined in text) neuron with
default parameters, probed with gratings with the neuron’s preferred orienta-
tion (0°) and spatial frequencies shown in key. The size of the stimuli was
equal to the measured RF diameter (0.81°). (See phenomena 7, 10, and 11 in
Table 1.)
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Fig. 4. Contrast response functions (CFs) produced by the hyperbolic ratio
model (Eq. 12). A: the exponent parameter nHB controls the slope of the CF as
a function of the log contrast of the stimulus. B: the semisaturation contrast
parameter �HB controls the location of the CF. A stimulus with contrast �HB

elicits one-half of the saturation level MHB. (�HB � 0.1 for A; nHB � 2 for B.)
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CFs—one for each stimulus template. It is for this reason that
this type of divisive normalization is called contrast-set gain
control (or simply contrast gain control).

The contrast gain control should not be confused with
luminance gain control (Eq. 1) or contrast adaptation. These
are different mechanisms in the visual system (Frazor and
Geisler 2006; Mante et al. 2005). The luminance gain control
(or light adaptation) is primarily accomplished in the retina
(Shapley et al. 1993; Shapley and Enroth-Cugell 1984; see also
Virsu et al. 1977; Virsu and Lee 1983). On the other hand, the
contrast gain control encompasses retinal (Baccus and Meister
2002; Scholl et al. 2012; Shapley et al. 1993; Shapley and
Enroth-Cugell 1984), subcortical (Kaplan et al. 1987), and
cortical (Bex et al. 2007; Ohzawa et al. 1982, 1985; Solomon
et al. 2004) contributions (Sclar et al. 1990; Truchard et al.
2000; see also The suppressive drive). Because of the lumi-
nance gain control, the maximal contrast is cmax � 1. The
semisaturation contrast parameter �HB in Eq. 12 is in light-
adapted units. Note that the hyperbolic ratio is not clearly
saturated for c 
 1 unless (�HB �� 1). There are recordings
from real V1 neurons whose CFs show no clear saturation at
high contrasts (see Busse et al. 2009; Vaiceliunaite et al. 2013
for examples).

The hyperbolic ratio model requires the extraction of two
distinct pieces of information about the stimulus. One is the
contrast c, which is an intrinsic property of the image. The
other is the degree of match between the input template IT and
the weighting function of the neuron. Both pieces of informa-
tion are available in the image, but they cannot be extracted by
the application of a single filter. The stimulus drive extracted
by a linear filter (Eq. 5) is a single number that confounds
contrast information and degree-of-match information. If either
of them is known, the other can be decoded from the stimulus
drive. The two models discussed so far are complementary in
this regard: The linear rectification model characterizes stim-
ulus selectivity, whereas the hyperbolic ratio model describes
the dependence on contrast. When an arbitrary stimulus is
presented, however, both pieces of information are unknown
and multiple filters must be applied to resolve this ambiguity.
The divisive normalization model pools the (half-squared)
outputs of filters with diverse tuning preferences to estimate the
intrinsic properties of the image. This pooled estimate is then
used to normalize the stimulus drives to the individual units.

Divisive normalization model. The notion of a normalization
pool is pivotal to the divisive normalization model (DNM) and
sets it apart from the simpler models discussed above. The
introduction of a normalization pool is motivated by three
convergent lines of evidence. The first line comes from the
experimental data on the contrast-set gain control outlined
above (Fig. 3), coupled with the need to pool across filters with
diverse tuning preferences to estimate the stimulus contrast. A
second, related line comes from a priori considerations involv-
ing the so-called noise-saturation dilemma (Grossberg 1988).
Individual neuronal responses are noisy, and they have a
limited dynamic range. The brain needs to represent signals
across very wide dynamic ranges. Hence the dilemma: “If the
[activations of individual neurons] are sensitive to large inputs,
then why do not small inputs get lost in internal system noise?
If the [activations] are sensitive to small inputs, then why do
they not all saturate at their maximum values in response to
large inputs?” (Grossberg 1988, p. 33). The proposed solution

relies on pooled inhibition12 within a network of interacting
neurons to normalize the individual responses relative to a
dynamically adjustable baseline. Such divisive normalization
has been proposed (e.g., Carandini and Heeger 2011) as a
canonical type of neural computation in a wide variety of
sensory modalities, brain regions, and species. The divisive
nonlinearity in the hyperbolic ratio model (Eq. 12) is an
instantiation of this general principle.

The third and most direct line of evidence motivating the
introduction of a normalization pool consists of experimental
demonstrations of various broadly tuned suppressive effects in
V1. In cross-orientation suppression, for example, the response
to a grating (signal) is suppressed by another grating (mask)
superimposed onto the signal within the neuron’s receptive
field (e.g., DeAngelis et al. 1992; Morrone et al. 1982; see
CROSS-ORIENTATION SUPPRESSION for further references and dis-
cussion). In surround suppression, the response is suppressed
by masks presented outside the classical RF (e.g., Cavanaugh
et al. 2002b; Li and Li 1994; see SURROUND SUPPRESSION).

Thus modeling the responses of a single individual neuron
requires filtering the input image with multiple linear filters
that have diverse weighting functions. Let this diverse set be
indexed by i, the filters in the normalization pool have prefer-
ences Pi, and P* denote the tuning preference vector (Eq. 8) of
the stimulus drive of the target neuron.

Heeger (1992b) combined all theoretical ideas introduced
above into a single equation. His formulation of the divisive
normalization model has been very influential (see Carandini
and Heeger 2011 for a recent review). In our notation, which is
different from Heeger’s, this equation is

RDN�I� � MDN

<EP*�I�=nDN

�DNnDN � �i��EPi
�I�nDN

(14)

where the summation in the denominator encompasses the
normalization pool �. The exponent nDN and the semisatura-
tion contrast �DN are free parameters analogous to their coun-
terparts in the hyperbolic ratio Eq. 12 (Fig. 4). Note that the
firing rate parameter MDN is a constant that does not depend on
the stimulus I. This parameter determines the stimulus drive
EP*(I) to the target neuron, which can be either a simple or a
complex cell (Eq. 9).

The suppressive drive �i��EPi
�I�nDN in the denominator

represents the aggregated inhibitory influence impinging on the
target neuron. There is evidence that this inhibitory influence
combines lateral inhibition from other neurons in V1, feedfor-
ward inhibition from and within the lateral geniculate nucleus
(LGN), and feedback inhibition from higher cortical areas
(e.g., Angelucci and Shushruth 2013; Sengpiel et al. 1998; see
The suppressive drive for further references and a brief discus-
sion). These sources have different temporal and spatial prop-
erties (e.g., Bair et al. 2003; see The suppressive drive). This is
an active research area that is beyond our present scope.
Equation 14 models this suppressive drive as a sum of (expo-
nentiated) homogeneous terms EPi

, each of which is analogous
to the stimulus drive EP* in the numerator. Note that various
authors have interpreted the divisive normalization equation as
a descriptive (e.g., Sengpiel et al. 1998), functional (e.g.,

12 The corresponding term in Grossberg (Ellias and Grossberg 1975; Gross-
berg 1973, 1988) is “mass action.”
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Heeger 1992b), or structural model. (The structural interpreta-
tion is often related to shunting inhibition, e.g., Carandini et al.
2002; Carandini and Heeger 1994) The present article focuses
on the functional aspect only. From the present point of view,
Eq. 14 entails no commitment about what neurophysiological
mechanisms produce the suppressive effect. The formula itself
suggests a three-stage sequence of linear filtering followed by
exponentiation followed by divisive normalization, and this is
indeed how Eq. 14 is implemented on a computer. This
sequential scheme, however, is not physiologically possible
because the unnormalized intermediate terms EPi

cannot be
represented by substrates with a limited dynamic range such as
membrane potentials or firing rates. This constraint is at the
core of Grossberg’s (1988) noise-saturation dilemma. Instead,
the normalization almost certainly involves dynamic inhibitory
interactions within a recurrent network (e.g., Brosch and Neu-
mann 2014; Chance and Abbott 2000; Ellias and Grossberg
1975; Heeger 1993; Kouh and Poggio 2008) in conjunction
with other regulatory mechanisms (e.g., Carandini et al. 2002;
Freeman et al. 2002).

Various variants of Eq. 14 have been used to account
successfully for extracellular recordings (e.g., Heeger 1992b;
Carandini and Heeger 2011), multielectrode population record-
ings (e.g., Busse et al. 2009; Goris et al. 2009; Ruff et al.
2016), EEG brain imaging data (e.g., Candy et al. 2001; Zhang
et al. 2008), fMRI brain imaging data (e.g., Boynton et al.
1999; Brouwer and Heeger 2011; Moradi and Heeger 2009),
and psychophysical data (e.g., Boynton and Foley 1999; Foley
and Chen 1999, 1997; Itti et al. 2000; Malo and Laparra 2010;
Meese et al. 2007, 2009; Meese and Holmes 2002; Neri 2011,
2015; Olzak and Thomas 1999, 2003; To et al. 2010). Unfor-
tunately, many of these applications use different mathematical
formulations and idiosyncratic parameterizations. This practice
makes it difficult to compare the results across studies despite
the clear family resemblance of the model variants.

Aiming to consolidate this scattered literature, we propose
Eq. 15 as the standard formulation of the divisive normaliza-
tion model (DNM). This equation is the centerpiece of the
present review. It is used to simulate a comprehensive suite of
empirical phenomena that are listed in Table 1 (Simulation
Experiments). By adjusting its parameters, Eq. 15 can represent
or approximate many (though not all13) of the main variants in
the DNM literature. It was chosen on the basis of theoretical
analysis and simulation experiments with several model vari-
ants that were compared informally on their ability to account
for the phenomena in Table 1. In our opinion, the following
formulation achieves a good balance between flexibility and
parsimony:

R�I� � M
<
 � knEP*�I�=nn

�nd � kd�i��wiEPi
�I�nd

(15)

The firing rate parameter M and the semisaturation contrast �
have the same interpretation as their counterparts in Heeger’s
(1992b) proposal (Eq. 14, Fig. 4). There are separate exponents nn
and nd for the numerator and denominator, respectively. The
baseline parameter 
 allows for nonzero responses when
the stimulus drive EP*(I) is zero. The maintained discharge of the
DNM neuron—its response to a blank stimulus (uniform gray
field)—is M<
=nn⁄�nd sps. Note that the firing rate of an actual
simple cell in V1 can be less than its maintained discharge
when the dark-excitatory regions in the cell’s receptive field
are stimulated by a light spot (Hubel and Wiesel 1959). This
property can be modeled by Eq. 15, assuming 
 � 0, but not
by Eq. 14. Conversely, setting 
 � 0 within the scope of the
half-wave rectification operator <·= amounts to setting a
threshold on the stimulus drive (Heeger 1992a; Sceniak et al.
2002; Tadmor and Tolhurst 1989). The constraint that 
 must
be fixed for a given neuron entails falsifiable predictions for the
model (see CONTRAST RESPONSE FUNCTION and APPENDIX C).

The calibration constants kn and kd are not free parameters.
Conceptually, they are factored into the weights wi in Eq. 15
and the weighting function of the linear filter EP* (Eq. 5). Both
constants are defined with respect to a single calibration image
Ical:

�kn � �EP*�Ical���1

kd � ��i��wiEPi
�Ical���1 (16)

The calibration image is chosen a priori as the grating whose
frequency and orientation (and phase for a simple cell) match
the preferences P* of the stimulus drive of the target neuron.
The contrast of Ical is 1, and its spatial extent is large enough
to fill both the classical receptive field and the suppressive
surround. Calibrating the model in terms of an explicit image
is convenient because it establishes a standardized scale for the
substantive parameters � and 
—they can be interpreted as
equivalent contrasts. To see why, consider the calibration
family of gratings {cIcal}c�[0,1] that use Ical as a template and
sweep a range of contrasts c. For this special family, Eqs. 15
and 16 reduce to the following variant of the hyperbolic ratio
model (Eq. 12; see also APPENDIX C):

R�cIcal� � M
<
 � c=nn

�nd � cnd
(17)

Then a positive baseline (
 � 0) can be interpreted as the
contrast of the counter-phase grating that cancels the main-
tained discharge of a simple cell and a negative baseline (
 �
0) as the contrast of the preferred (in phase) grating that barely
elicits a response.

To complete the specification of the divisive normalization
model, we need to define the suppressive drive �i��wiEPi
�I�nd in the denominator of Eq. 15. This is an important aspect
of the DNM. Our simulations indicate that changing the com-
position of the suppressive drive can affect the overall model
performance as much as manipulating the parameters in Eq. 15.
We need to specify three things: the weighting functions of the
linear filters EPi

, the composition of the normalization pool �
encompassed by the sum, and the pooling weights wi. We
followed the common practice (e.g., Itti et al. 2000; Reynolds
and Heeger 2009) with respect to all three. First, we assume all
linear filters have the same spatial-frequency bandwidth hf (Eq.

13 Equation 15 does not consider, for example, spatial anisotropy of the
surround suppression/facilitation in its denominator (Li 1998; Li and Li 1994;
Polat et al. 1998; Vinje and Gallant 2000; see Eq. 19 and The suppressive
drive). Neither does it provide for multiple image filters (subunits) in the
numerator (Carandini et al. 1997; Carandini and Heeger 2011; Goris et al.
2015; Kouh and Poggio 2008; Rust et al. 2005; Vintch et al. 2015), except for
the energy model of the complex cell (Eq. 7). The introduction of multiple
subunits would undoubtedly make the DNM much more flexible in many
respects (see The Stimulus Drive for further discussion).

3059DIVISIVE NORMALIZATION MODEL OF V1 NEURONS

J Neurophysiol • doi:10.1152/jn.00821.2016 • www.jn.org



4) and the same orientation bandwidth h� (Eq. 3). These hf and
h� are assumed for the stimulus drive EP* as well. Second, we
assume that the normalization pool tiles the space of frequen-
cies and orientations. There is evidence (DeAngelis et al. 1992,
1994) that the suppressive effects are approximately invariant
with respect to the phase of the mask grating. We model this by
including only phase-invariant components EC (Eq. 7) into �.
Third, we adopt the common simplifying assumption that the
pooling weights wi can be separated14 into independent pooling
kernels with respect to space, frequency, and orientation:

�
i��

wiEPi
�I�nd

� �
XiYi��XY

�
Fi��F

�
�i���

wXiYi
wFi

w�i
EC:XiYiFi�i

�I�nd (18)

where �XY is a grid of image locations, �F is a set of frequency
channels, and �� is a set of orientation channels. This speci-
fication is constrained by empirical data on various forms of
suppression15 (surveyed in Results) and by considerations of
symmetry, parsimony, and computational efficiency.

The spatial pooling weights wXiYi
are defined by a radially

symmetric 2D Gaussian kernel

wXiYi
 exp��4ln2

�Xi � X*�2 � �Yi � Y*�2

�hR ⁄ F*�2 
 (19)

where X* and Y* are the coordinates of the center of the spatial
integration field of the stimulus drive and F* is the preferred
frequency of the stimulus drive. The weights are defined up to
a scaling factor and then calibrated by kd in Eq. 16. The
diameter at half height of the kernel is proportional to the
preferred wavelength 1/F* of the stimulus drive of the target
neuron. The spatial pooling bandwidth hR (in number of
cycles) is a free parameter common to all channels. Note that
the overall suppressive field of the model is produced by a
combination of two types of spatial summation. First, the
individual components EPi

perform summation within elliptical
Gabor receptive fields whose spatial dimensions hx̆ and hy̆ also
are proportional to the respective channel wavelengths (Eqs. 3
and 4). Second, after nonlinear rectification with exponent nd,
there is another summation across components centered on
multiple locations XiYi. Equation 19 defines the weighting
function of the latter summation.

The frequency pooling weights wFi
are defined by a Gauss-

ian kernel along the log-frequency (octave) dimension:

wFi
 exp��4 ln 2

�log2Fi � log2F*�2

hF2

 (20)

The pooling kernel is centered on the preferred frequency F*
of the stimulus drive of the target neuron. (This restriction may
have to be relaxed—see APPENDIX E.) The frequency pooling
bandwidth hF (in octaves) controls the FWHH of the kernel.
This parameter is distinct from the bandwidth hf of the weight-
ing functions of the individual components EPi

. Because of the
pooling, the frequency tuning of the suppressive effects is
broader than hf, in agreement with the data (DeAngelis et al.
1994; Li and Li 1994).

Finally, the orientation pooling weights w�i
are defined by a

von Mises kernel

w�i
 exp���cos2��i � �*�� (21)

where �* is the preferred orientation of the stimulus drive of
the target neuron. The von Mises distribution is the circular
analog of the normal distribution (Fisher 1996). The dimen-
sionless concentration parameter �� is intuitively similar to
inverse variance. Equation 21 assigns wmaxe�� to the pre-
ferred orientation and wmine��� to the orthogonal orientation.
The two points whose height is halfway between these two
extremes occur at orientations �* 	 h�/2, where

cos�h�� �
1

��

ln� e�� � e���

2 
 (22)

This equation establishes an invertible relationship in which
h� monotonically increases as �� decreases. The circular
uniform distribution w�i

1 is the special case for �� � 0,
h� � 90°. It is convenient to parameterize the DNM in terms
of its orientation pooling bandwidth h� (in °). Again, this
parameter is distinct from the bandwidth h� of the weighting
functions of the individual components EPi

. Because of the
pooling, the tuning of cross-orientation suppression is broader
than h�, in agreement with the data (DeAngelis et al. 1992;
Morrone et al. 1982). Unfortunately, �� cannot be expressed as
a closed-form function of h�, but in practice Eq. 22 is easy to
solve numerically.

Overall, our formulation of the divisive normalization model
has 10 free parameters: M, �, 
, nn, and nd in Eq. 15, the tuning
bandwidths hf and h� of the linear filters (Eq. 5), and the
pooling bandwidths hR, hF, and h� of the suppressive drive
(Eq. 18). Five auxiliary constants (hx

„, hy
„, ��, kn, and kd) are

calculated from the free parameters (cf. Table 2).

Simulation Experiments

The divisive normalization model (DNM, Eq. 15) was im-
plemented and tested on a wide range of stimuli designed to
replicate a comprehensive suite of published neurophysiolog-
ical studies (Table 1).

Computational implementation and calibration. We devel-
oped MATLAB (The MathWorks 2015) software that takes a
static grayscale image as input and produces a matrix of firing
rate responses for a population of DNM neurons. The neurons
in this population have receptive fields at a single retinal
location, and they are tuned for a range of orientations and
spatial frequencies. The details of this implementation are
given in APPENDIX F. Briefly, the software provides tools for

14 This assumption ignores nonseparable effects such as end stopping and
contour integration, which require coordination among components with
aligned orientations at neighboring locations (Kapadia et al. 1995; Li 1998). It
also limits the model’s ability to account for certain nonseparable types of
suppression as discussed in CROSS-ORIENTATION SUPPRESSION and APPENDIX E.

15 Cross-orientation and surround suppression have similar effects on the
static (steady state) responses of real V1 neurons (see CROSS-ORIENTATION

SUPPRESSION and SURROUND SUPPRESSION). Hence, both types of suppression are
combined at the functional level into a common suppressive drive term in Eq.
15, even though converging physiological evidence suggests that these two
types of suppression arise from distinct mechanisms (see The suppressive drive
for references and discussion). If some neurons show incompatible patterns of
cross-orientation and surround suppression, both types of suppression can still
be modeled with a combined suppressive drive by relaxing the assumption of
separability of the pooling kernels (cf. APPENDIX E).
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accomplishing two main computational tasks: constructing a
DNM object for a given parameter set and calculating the
responses of a model for a given input image.

A DNM object is a data structure that encapsulates the
model’s parameters, weighting functions (WFs) for all linear
filters, pooling weights for the suppressive drive, and various

auxiliary information. Our implementation used N� � 12
orientation channels spaced evenly at 15° increments around a
circle. It used the following set of spatial-frequency channels:

�F � ��2⁄2,1,�2,2,2�2,4,4�2�cyc/°. The first and last
channels in this set were auxiliary. They were included to
contribute to the normalization of the five main channels in the
middle. The WF of each channel was a Gabor function (Eq. 2).
Two WFs were constructed per channel: one in sine (� � 90°)
and one in cosine (� � 0°) phase (Fig. 1), for a total of
168 � 12  7  2 Gabor patches. The sizes hx

„ and hy
„ of their

Gaussian envelopes were calculated from the free parameters
hf and h� according to Eqs. 4 and 3. All images were rendered
on a square 128  128 grid subtending 5.76 degrees of visual
angle. To improve efficiency, we also used a “small” 64  64
grid for some simulations that did not involve stimuli with
extensive surrounds.

The calibration constants kn and kd were calculated accord-
ing to Eq. 16 with the aid of a calibration grating Ical with unit
contrast, vertical orientation (�* � 0°), frequency F* � 2.0
cyc/°, phase �* � 0°, and spatial extent covering the entire
grid.

The calibrated model can be applied to an arbitrary grayscale
input image. The computationally expensive operation is the
calculation of the suppressive drive in Eq. 18. The stimulus is
convolved with each of the 168 Gabor filters to produce 84
phase-invariant suppressive terms EPi

in Eq. 15. The software
uses the FFT algorithm (fast Fourier transform; Lathi 2005) to
compute these convolutions efficiently (see APPENDIX F for
details). The suppressive drives of multiple simulated neurons
can be computed as weighted linear combinations of the same
EPi

with different pooling kernels wXiYi
, wFi

, and w�i
centered

on different orientations and frequencies (Eqs. 18–21). Our
software calculates the responses of 60 DNM complex cells
and 240 DNM simple cells. The former are phase invariant
(Eq. 7) and span the 12 orientations  5 frequencies listed
above (excluding the auxiliary frequencies). The latter vary
also in phase: � � 0°, 90°, 180°, and 270°.

The channel with �* � 0° and F* � 2.0 cyc/° is singled out
as the target and used to generate the DNM predictions in most
figures below. Note, however, that it is only marginally more
expensive to compute an entire population code of the input
image (deCharms and Zador 2000; Pouget et al. 2003). Our
software can be used as off-the-shelf front end to larger models
utilizing population codes. In fact, an earlier version of the
software has been incorporated into such larger models (Jacobs
2009; Petrov et al. 2005, 2006).

Standard parameter set. We propose the values listed in
Table 2 as a standard parameterization of the DNM. These
values were used to generate almost all of the DNM results in
this article, with a few exceptions noted explicitly below. They
are compatible with typical neurophysiological measurements
of representative simple and complex cells and with the phe-
nomena in Table 1. Thus these values are good defaults when
the DNM is used as a building block for the construction of
larger models of the visual system. The explicit reliance on a
calibration image (Eq. 16) is designed to facilitate the reus-
ability of parameter values across multiple applications.

A limitation inherent in the notion of standard parameter-
ization must be acknowledged: Real V1 neurons have diverse
properties (e.g., see Busse et al. 2009; De Valois et al. 1982a;

Table 1. Phenomena accounted for by divisive normalization
model (Eq. 15) in simulation experiments

Number Phenomenon Figure

1 Size tuning: The RF has limited spatial extent. 5
2 The measured RF diameter increases as the

grating contrast decreases.
6

3 The measured RF diameter decreases for
nonpreferred orientations.

7

4 The measured RF diameter decreases for
nonpreferred spatial frequencies.

8

5 The response decreases monotonically as the
hole in an annular grating increases.

9

6 The response relationship with hole size is
nearly invariant to stimulus contrast.

9

7 The CF has a characteristic sigmoidal shape. 3
8 Supersaturation effect: The CF can slope

downward at very high contrasts.
10

9 The CF is affected by visual noise added to
the grating stimulus.

11

10 The CF is scaled down for gratings with
nonpreferred orientations.

3

11 The CF is scaled down for gratings with
nonpreferred spatial frequencies.

3

12 The CF is affected by the size of the grating
patch.

12

13 Orientation tuning: The response is maximal
for the preferred orientation.

2

14 Spatial-frequency tuning: The response is
maximal for the preferred frequency.

2

15 Orientation bandwidths become narrower as
the size of grating patch increases.

13

16 Frequency bandwidths become narrower as
the size of grating patch increases.

13

17 Orientation bandwidths tend to be invariant
with respect to the grating contrast.

14

18 Frequency bandwidths tend to become
narrower as the contrast decreases.

14

19 The spatial-frequency tuning function has a
secondary peak for square gratings.

15

20 The CF shifts leftward for square gratings
compared with sinusoidal ones.

15

21 Cross-orientation suppression: orientation
tuning of the mask grating

16

22 Cross-orientation suppression: spatial-
frequency tuning of the mask grating

16

23 Cross-orientation suppression: The mask
contrast affects the CF.

18

24 Surround suppression: orientation tuning of
the surrounding grating

19

25 Surround suppression: spatial-frequency tuning
of the surrounding grating

19

26 Surround suppression: The contrast of an
annular grating affects the CF.

20

27 Surround suppression: The orientation of an
annular grating affects the CF.

21

28 Mapping the RF of a simple cell with a light
spot

23

29 Mapping the RF of a simple cell with the
reverse correlation method

24

30 Comparison of the mapped RF of a simple
cell and its spatial-frequency tuning

25

RF, receptive field, CF, contrast response function.
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Goris et al. 2015; Peirce 2007) that are impossible to subsume
under a single parameter set. We reviewed single-cell record-
ings from different species (e.g., cats, New/Old World mon-
keys, rabbits, rodents, and ferrets) obtained under different
conditions (e.g., anesthesia vs. alertness: Bereshpolova et al.
2011; Chen et al. 2009; Disney et al. 2007; Ecker et al. 2014;
Goltstein et al. 2015; Niell and Stryker 2010; Pisauro et al.
2013; Vaiceliunaite et al. 2013) and different experimental
protocols (see Mukherjee and Kaplan 1995; Smyth et al. 2003
for examples). Furthermore, there is substantial variability
within a sample of neurons recorded from a single animal
under constant conditions. Clearly, model parameters need to
vary substantially to accommodate this diversity. The standard
set in Table 2 is proposed as an estimate of the central tendency
of a broad distribution. Our goal is to produce a qualitative
account of the phenomena in Table 1 rather than a quantitative
fit of a specific data set.

Now, let us discuss briefly the 10 free parameters in Table 2.
The firing rate parameter M converts the dimensionless ratio of
Eq. 15 into physiologically observable units (spikes/s). This
parameter plays no role in accounting for the qualitative
patterns that are our focus here but is indispensable for quan-
titative fitting of actual neuronal firing rates. The semisatura-
tion contrast � was discussed in Hyperbolic ratio model and
illustrated in Fig. 4B. Under the DNM calibration (Eq. 15), it
is expressed in dimensionless units and can be interpreted as
equivalent contrast. The proposed value (� � 0.1) is consistent
with empirical estimates obtained via hyperbolic ratio fits to
the contrast response functions of V1 neurons (Albrecht and
Hamilton 1982; Busse et al. 2009; Gardner et al. 1999; Sclar et
al. 1990). The exponents nn and nd control the slope of the CF
(Fig. 4A). Exponents � 1 are needed to account for the
accelerating nonlinearity at low contrasts discussed in APPENDIX

B. The standard value nn � nd � 2 is consistent with empirical
estimates (e.g., Albrecht et al. 2003, p. 752; Busse et al. 2009,
p. 933) and implements Heeger’s (1992a) half-squaring oper-
ator <·=2. Note that Eq. 15 has separate exponents for the
numerator and denominator. This additional flexibility is
needed for quantitative fits of physiological (e.g., Carandini
and Heeger 2011) and psychophysical (e.g., Itti et al. 2000)
data.

The baseline parameter 
 can be interpreted as equivalent
contrast as discussed in Divisive normalization model. The
interpretation depends on its sign. Negative values effectively
impose a threshold on the stimulus drive (cf. Eq. 11), whereas
positive values produce a maintained discharge in response to
a blank stimulus (uniform gray field). Many real neurons in V1
emit spikes in the absence of external stimulation, although the
spontaneous firing rates typically are quite low (Allison and
Bonds 1994; De Valois et al. 1982a; Hubel 1959; Hubel and
Wiesel 1959; Nassi et al. 2015; Pettigrew et al. 1968; Squatrito
et al. 1990). For example, Hubel and Wiesel (1959) recorded
maintained discharges between 0.1 and 10 spikes/s in V1
neurons of anesthetized cats. Under the standard parameteriza-
tion, Eq. 15 produces M<
=nn⁄�nd � 1.6 spikes/s. The 

parameter is in the focus of the mathematical analyses below
(see Eq. 23 and APPENDIX C) and several simulations (e.g., Fig.
10) that explore nonstandard values.

The remaining five free parameters control various band-
widths. They have diverse units (listed in Table 2) and
should be interpreted with care because their empirically
observable analogs depend on complex interactions among
the DNM components as discussed in ORIENTATION AND

SPATIAL-FREQUENCY TUNING. For instance, the orientation tun-
ing bandwidth of the model as a whole is 31.8° under the

Table 2. Parameters of divisive normalization model (Eq. 15)

Parameter Equation Value

Free parameters
Firing rate, spikes/s 15 M � 40
Semisaturation contrast (dimensionless) 15 � � 0.1
Baseline (a.k.a. maintained discharge) (dimensionless) 15 
 � 0.02
Stimulus drive exponent 15 nn � 2
Suppressive drive exponent 15 nd � 2
Orientation FWHH bandwidth of the Gabor WF, ° 2, 3 h� � 40
Spatial-frequency FWHH bandwidth of the Gabor WF, oct 2, 4 hf � 1.5
FWHH of the radial spatial-pooling kernel, cyc 19 hR � 2.0
Orientation pooling FWHH bandwidth, ° 21, 22 h� � 60
Spatial-frequency pooling FWHH bandwidth, oct 20 hF � 2.0

Constants calculated from the free parameters
FWHH size of the Gabor WF, perpendicular to grating, °/cyc 2, 4 hx

„ 
0.92
FWHH size of the Gabor WF, parallel to grating, °/cyc 2, 3 hy

„ 
1.26
Concentration parameter of the orientation pooling kernel 21, 22 �� 
1.22
Stimulus drive calibration constant (implementation dependent) 15, 16 kn � 0.25
Suppressive drive calibration constant (implementation dependent) 15, 16 kd 
 0.011

Implementation specifications chosen a priori
No. of orientation channels, evenly spaced around the circle 18 N� � 12
No. of (main � auxiliary) spatial-frequency channels 18 NF � 5 � 2
Spacing of the frequency channels, oct �F � 0.5
Preferred orientation of the stimulus drive, ° 16 �* � 0
Preferred frequency of the stimulus drive, cyc/° 16 F* � 2.0
Size of a “large” (128  128) input image, ° 5 5.76
Size of a “small” (64  64) input image, ° 5 2.88

The values for the 10 free parameters are compatible with typical neurophysiological measurements of representative simple and complex cells. Moreover,
the model under this standard parameterization accounts qualitatively for the phenomena in Table 1. All simulation results in this article were produced with these
parameter values unless explicitly stated otherwise. FWHH, full width at half height; WF, weighting function; cyc, wave cycle; oct, octave � log[cyc/°].
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standard parameters (Figs. 13 and 14). Note that this is
smaller than the bandwidth h� � 40° of the linear filtering
stage and much smaller than the pooling bandwidth
h� � 60° of the suppressive drive. Analogously, the fre-
quency tuning bandwidth of the standard model as a whole
is 1.11 oct, which is smaller than both hf � 1.5 and hF � 2.0
oct. The overall model bandwidths are within the reported
ranges of neurophysiological measurements (Busse et al.
2009; De Valois et al. 1982a; Kulikowski and Bishop 1981;
Movshon et al. 1978a; Rose and Blakemore 1974; Schiller et
al. 1976a, 1976b; Watkins and Berkley 1974). Finally, the
standard FWHH of the radial spatial-pooling kernel (Eq. 19)
covers hR � 2.0 cycles of the neuron’s preferred frequency.
This value is consistent with surround-suppression measure-
ments (see SIZE TUNING and SURROUND SUPPRESSION for
references).

Results. A systematic series of simulation experiments rep-
licated the qualitative patterns characterizing the phenomena in
Table 1. The simulated DNM patterns are plotted alongside
single-cell recording data from representative experiments.
The physiological data were captured from the figures in their
respective publications with PlotDigitizer (http://plotdigitizer.
sourceforge.net) and replotted here in a unified format. All
simulations used the standard parameters listed in Table 2
unless explicitly indicated otherwise.

SIZE TUNING. Our first simulation measured the responses of a
DNM complex cell as a function of the stimulus diameter.16

All stimuli were gratings whose orientation �* � 0° and
frequency F* � 2 cpd matched the cell’s tuning preferences.
The resulting size tuning function is plotted in Fig. 5A for
gratings with maximal contrast c � 1. The responses increased
as stimulus size increased at first, reached a peak, decreased,
and finally settled to an asymptote. This matches the qualitative
pattern observed in single-cell recordings of V1 neurons (Gie-
selmann and Thiele 2008; Jones et al. 2001; Schwabe et al.
2010; Sengpiel et al. 1997).

The nonmonotonic response pattern in Fig. 5 indicates that
the neuron’s RF has limited spatial extent (phenomenon 1 in
Table 1). The diameter of the grating that induces the maximal
response is often used in physiological studies to operationalize
the size of the classical RF. For the DNM neuron, this mea-
sured RF diameter (MRFD) is 
0.81° (marked by arrowhead in
Fig. 5A). Note that it is narrower than the FWHH sizes of the
elliptical contour of the weighting function of the model’s linear
stage (hx̆ � 1.26° and hy̆ � 0.92°, Table 2; see also Fig. 1). Other
parameter sets were also tested, and the MRFD tended to
expand as nn, �, h�, or hF increased or 
, nd, h�, or hf
decreased. As a consistency check, note also that the mea-
sured asymptotic response rate (
41.2 spikes/s) matched
the prediction of the hyperbolic ratio Eq. 17. This is because
the gratings with very large diameters in this simulation
became identical to the calibration image Ical, thereby sat-
isfying the condition for applicability of Eq. 17.

The nonmonotonic response pattern in the model arises from
the interplay between the numerator and denominator in Eq.
15. As the stimulus diameter increases, the stimulus drive (Eq.

9) rises faster but saturates earlier than the suppressive drive
(Eq. 18, Fig. 5C; Gieselmann and Thiele 2008).

The MFRDs of real neurons depend on the parameters of
the grating. The MRFD increases as the stimulus luminance
contrast decreases (phenomenon 2, Fig. 6B; Cavanaugh et
al. 2002a; Kapadia et al. 1999; Nienborg et al. 2013;
Sceniak et al. 1999; Schwabe et al. 2010; Sengpiel et al.
1997; Tailby et al. 2007). Also, the MRFD decreases for
gratings with nonpreferred orientations (phenomenon 3, Fig.
7B; Tailby et al. 2007). The DNM neuron reproduces both
phenomena (Figs. 6A and 7A). The simulation that produced
Fig. 7A was designed to emulate the method of Tailby et al.
(2007). Specifically, the stimuli in the Opt condition (gray
solid line, Fig. 7A) were gratings of the preferred orientation
(0°). We determined the MRFD for the DNM neuron in the
Opt condition (0.81°, vertical dashed line, Fig. 7A) and then
determined the orientation tuning curve for gratings with
this diameter (see Fig. 13A). The orientation in the Ori�
condition (15.9°) was determined by the half-height points
of this (symmetric) tuning curve. Probing the DNM neuron
with gratings at this suboptimal orientation produced the
dotted black line in Fig. 7A. It replicates the qualitative
pattern of the neurophysiological data in Fig. 7B.

16 Note that the size tuning functions of real neurons are often estimated
with a difference-of-Gaussian model (Gieselmann and Thiele 2008; Osaki et
al. 2011; Sceniak et al. 1999, 2002; Schwabe et al. 2010) under various
conditions. Some variants of the DNM can also fit the empirical tuning
functions well (Cavanaugh et al. 2002a; Tailby et al. 2007).

101

Fi
rin

g 
ra

te
 (s

pi
ke

s/
se

c)

50

0

10

20

30

40

100

60

70

80

90

Diameter (°)

A

101

Fi
rin

g 
ra

te
 (s

pi
ke

s/
se

c)

50

0

10

20

30

40

100

60

70

80

90

Diameter (°)

B

O
ut

pu
t

0

0.5

1

Diameter (°)
1 100.1

Suppressive drive
Stimulus drive

C

Suppressive drive
Stimulus drive

Fig. 5. Size tuning functions of a divisive normalization model (DNM) com-
plex cell with standard parameters (A), 3 V1 complex cells (B) (replotted from
Schwabe et al. 2010, Fig. 2, anesthetized macaque; error bars � 	SE), and
the stimulus and suppressive drive terms of the DNM equation (C). The
measured RF diameter of the DNM neuron is 0.81° (indicated by arrowhead in
A). All stimuli were gratings with maximal contrast (c � 1) and orientation and
frequency that matched the preferences of the respective neuron. (See phe-
nomenon 1 in Table 1.)
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The MRFD of the model is also affected by the spatial
frequency of the grating. It decreases if the frequency is either
lower or higher than the DNM neuron’s preferred frequency,
with stronger decreases for lower frequencies (Fig. 8A). The
nonoptimal stimulus frequencies (SpfL � �0.21 oct, 0.86 cpd;
SpfH � 1.52 oct, 2.87 cpd) for this simulation were chosen at
the half-height points of the model frequency-tuning curve (see
Fig. 13D; Tailby et al. 2007). The available recordings from
real V1 neurons suggest that their MRFD tends to decrease as
the stimulus frequency becomes higher than the preferred
frequency, but no clear trend has been observed when the
stimulus frequency becomes lower (Fig. 8B; Osaki et al. 2011;
see also Tailby et al. 2007). This qualitative pattern may be
somewhat different from the DNM prediction. The shift in
MRFD for nonoptimal frequencies is a complex effect that
depends on the size tuning of both the stimulus and suppressive
drives. Their size tuning curves are affected differently by the
stimulus frequency manipulation because of the different com-
position of the two kinds of drives in the DNM. The stimulus
drive is a single Gabor filter, whereas the suppressive drive is
composed of multiple filters (or channels, Eq. 18). The chan-
nels of the suppressive drive are tuned to a range of frequen-
cies, and the lower-frequency channels have Gabor weighting
functions with larger spatial integration fields (see Eqs. 3 and
4 and APPENDIX F). We discuss the relationships among channel
properties, stimulus size, and stimulus frequency in Summary
and discussion.

The size tuning of V1 neurons has also been measured with
annular stimuli that overlay a circular gray “hole” in a larger
circular grating with the neuron’s preferred orientation and
frequency (Cavanaugh et al. 2002a; Jones et al. 2001; Sengpiel
et al. 1997). The recordings from V1 neurons decreased mono-
tonically as the diameter of the hole increased and then leveled
off at an asymptotic level that was similar to the spontaneous
discharge of the cell (Fig. 9B, phenomenon 5). It is instructive

to compare the hole diameter for which the responses become
nearly constant with the RF diameter measured with disk
stimuli as discussed above. The two procedures yield compa-
rable results for the DNM neuron with the standard parameter
set (Fig. 9A). This pattern is common for neurons in anesthe-
tized cat V1 (Sengpiel et al. 1997) and in anesthetized macaque
V1 (Jones et al. 2001; Fig. 9B). On the other hand, in another
sample from anesthetized macaque V1 (Cavanaugh et al.
2002a) the hole diameter of many neurons (162/217) was
substantially larger (47% on average) than the RF diameter
(Cavanaugh et al. 2002a; Fig. 9D). The DNM can reproduce
this pattern (Fig. 9C) with a modified parameter set
(M � 25, nd � 2.5, 
 � 0.005, � � 0.04). Recall that when
disk stimuli (with no holes) are used to measure the RF
diameter, the latter depends on stimulus contrast for both
real and model neurons (Fig. 6). When annular stimuli are
used, however, the DNM predicts approximate invariance
with respect to the contrast of the grating inside the annular
envelope (Fig. 9A, phenomenon 6).

CONTRAST RESPONSE FUNCTION. Recall from Hyperbolic ratio
model that the contrast response function (CF) describes how a
neuron’s response depends on the contrast of the stimulus.
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When probed with simple gratings, the DNM includes the
hyperbolic ratio model as a special case (Eq. 17; see also
APPENDIX C). Thus the hyperbolic ratio fits to the CFs of real
neurons (e.g., Albrecht et al. 2003; Albrecht and Hamilton
1982) can be reinterpreted as support for the DNM. Moreover,
variants of these two models were developed to explain change
of the CFs under different conditions (Carandini et al. 1997;
Cavanaugh et al. 2002a; Heeger 1992b; Peirce 2007; Sengpiel
et al. 1998).

Our simulations measured the CF of the DNM neuron with
gratings whose orientation and frequency matched the neuron’s
preferences and whose size was large enough (5.58°) to cover
the neuron’s suppressive field. The model responses are plotted
in Fig. 10A (solid curve) as a function of stimulus contrast
(phenomenon 7). The slope of the CF becomes maximal when
the contrast is at 9%, above 0. It may be relevant to the
psychophysical literature that a differential threshold of a
grating contrast becomes minimal above the contrast detection
threshold (see Itti et al. 2000; Wilson 1980 for a comparison
between human and model performance on luminance contrast
discrimination).

Note that the CF of the DNM neuron slightly decreases if the
contrast is higher than 50% with the standard parameter set
(indicated by a solid curve and an open circle in Fig. 10A). An
analogous pattern is also observed from some real neurons (Li
and Creutzfeldt 1984; Peirce 2007; Somers et al. 1998; Tyler
and Apkarian 1985). This is called the supersaturation effect
(phenomenon 8). This effect could be emulated only weakly by
the DNM neuron with the standard parameter set. Some V1
neurons, however, do show the supersaturation effect very
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clearly (Fig. 10B). Mathematical analysis (APPENDIX C) indi-
cates that the model produces this effect when the baseline
parameter 
 exceeds the following critical value:


 �
nn

nd
�1 � �nd� � 1 (23)

This inequality suggests that the supersaturation effect be-
comes stronger as 
 increases, � decreases, and nn/nd decreases
(Fig. 10A; see also Sawada and Petrov 2015 for supersaturation
plots produced with a different parameter set).

When visual noise is added to the preferred grating of a real
neuron, the neuron’s responses tend to scale down by a mul-
tiplicative factor (phenomenon 9; Carandini et al. 1997). This
effect was observed in the model when the contrast of the tuned
grating was high (e.g., 50%, 25%, and 12% in Fig. 11, A and
B). When the contrast of the grating was zero or very low,
adding noise increased the response of the DNM neuron (Fig.
11, A and B). The response of the real neurons was also
increased by the noise alone (from 0.8 	 0.3 to 2.0 	 0.6
spikes/s; Carandini et al. 1997). This effect of the noise without
any grating can depend on the neurons (Squatrito et al. 1990).
In the simulations, the addition of visual noise increased the
DNM firing rate but decreased the slope of the CF for near-zero
grating contrasts (Fig. 11A). Decreasing the slope is expected
to increase the threshold of the model neuron for detecting the
grating. However, if the output of one model neuron is relayed
as excitatory input to another model neuron, it is possible that
adding noise to the stimulus elevates the responses of the first
neuron enough to trigger a response in the second neuron. In
this way, moderate amounts of additive stimulus noise can
improve the detection performance of the entire ensemble,
despite the fact that the noise decreases the CF slope in the first
stage (Funke et al. 2007). This effect is called stochastic
resonance (Moss et al. 2004). Some psychophysical studies
have claimed that stochastic resonance can be measured be-
haviorally (Moss et al. 2004; Sasaki et al. 2006a; Simonotto et
al. 1997), but others have proposed alternative explanations
(Perez et al. 2007).

The CFs of real neurons were affected by the orientation
(phenomenon 10; Carandini et al. 1997; Tolhurst and Dean
1991) and the spatial frequency (phenomenon 11; Albrecht et
al. 2003; Albrecht and Hamilton 1982; Carandini et al. 1997)
of the stimulus grating. The CFs of real V1 neurons were multi-

plicatively scaled down if the orientation or the frequency of the
grating was different from the neuron’s preferred orientation or
frequency (Fig. 3; Carandini et al. 1997). These trends are also
observed in the model (Fig. 3, B and D; see APPENDIX D for the
mathematical analysis).

Our simulation experiments showed that the CF of the model
neuron was also affected by the size of the grating patch (Fig.
12). As stimulus diameter increases up to 0.8°, the overall
firing rate increases, the CF slope at low contrasts becomes
steeper, and the function becomes more saturating at high
contrasts. Then, the asymptotic firing rate decreases while the
slope at low contrasts is unchanged up to 3.2°. The function is
unchanged even if stimulus diameter becomes larger than 3.2°.
These simulation results can be explained by the mathematical
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Fig. 11. Responses of the model neuron (A and C) and a V1 simple cell
(replotted from Carandini et al. 1997, Fig. 14, D and C, anesthetized macaque;
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neuron. (See phenomenon 9 in Table 1.)
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analysis of the DNM in APPENDIX D. Note that an analogous
trend was recorded from LGN neurons and was explained in
terms of a divisive operation (Bonin et al. 2005). To the best of
our knowledge, however, the phenomenon has never been
observed in V1 neurons with grating patches as stimuli (see
Schumer and Movshon 1984). Note also that the supersatura-
tion effect is observed from the DNM neuron if the stimulus
diameter is 1.6° or larger.

ORIENTATION AND SPATIAL-FREQUENCY TUNING. The orientation
and spatial-frequency tuning functions of the DNM neuron are
shown in Fig. 2 (phenomena 13 and 14). The measured peaks
of the tuning functions were consistent with the weighting
function of the stimulus drive (Eq. 2). The measured band-
widths of the tuning functions were 31.8° in the orientation
domain and 1.11 oct in the frequency domain. Other parameter
sets of the model were also tested, and the measured band-
widths tended to become narrower as nn, �, h�, or hF increases
or 
, nd, h�, or hf decreases. Note that the measured bandwidths
were substantially narrower than those of the weighting func-
tion of the linear filter in Eq. 5 (h� � 40°, hf � 1.5 oct). This
narrowing effect is attributed to the rectification and the ex-
pansive nonlinearity (nn � 1) in the numerator of Eq. 15.

Note that the bandwidths of the numerator of Eq. 15 are a
little narrower (29.2° and 1.04 oct) than those of the DNM
neuron itself (31.8° and 1.11 oct). This occurs because the
denominator of Eq. 15, which represents suppression, tends to
widen the tuning curves of the DNM neuron. The tuning
functions of the denominator are unimodal and become max-
imal at the same orientation and frequency as those of the
numerator. The divisive operation then has a widening effect
and becomes stronger as the denominator becomes more
sharply tuned. This is why the bandwidths of the DNM neuron
become wider as �, h�, or hF decreases or as nd increases
because they make the tuning functions of the denominator
narrower. In particular, the h� and hF parameters (Table 2)
allow an almost independent control of the widening of the
orientation and frequency tuning, respectively.

There is evidence that the orientation (Li and Li 1994;
Okamoto et al. 2009; see also Maffei and Fiorentini 1976 for a
report of a few exceptional neurons) and spatial-frequency
(Maffei and Fiorentini 1976; Osaki et al. 2011) bandwidths of
real neurons become narrower when the size of the grating
patch increases. The model simulated this effect well (Fig.
13A). The stimulus drive (Eq. 9) has a similar effect on both
kinds of bandwidths, whereas the suppressive drive (Eq. 18)
has different effects. Figure 13, E and F, plot the effect of
stimulus size on the FWHH bandwidths of the DNM neuron,
the numerator and denominator in Eq. 15, and the stimulus and
suppressive drives. The orientation bandwidth profiles of these
various terms unfold essentially in parallel (Fig. 13E). The
overall inverse relationship between stimulus size and orienta-
tion bandwidth arises because the weighting function of the
linear stage of the model is partially hidden by the surround
suppression. This leads to a systematic underestimation of the
measured RF (De Valois et al. 1985). Then, the measured
bandwidths become wider if the grating patch just fills the
underestimated RF.

On the other hand, surround suppression does modulate the
relationship between DNM’s frequency bandwidth and the size
of the grating patches. Note the nonmonotonic frequency
bandwidth profile of the suppressive drive (Eq. 18) in Fig. 13F.
The drop at small stimulus sizes arises because the suppressive
channels tuned to very low spatial frequencies cannot be
stimulated well by a small grating patch (see also Fig. 8C and
Fig. 22). The low-frequency channels have larger spatial inte-
gration fields (Linear rectification model of simple cells and
energy model of complex cells). The overall effect is to broaden
the frequency tuning curve of the DNM neuron as the patch
size decreases (Fig. 13D). Note that the peak of the frequency
tuning curve of real neurons tends to shift to a higher frequency
as the size of the stimulus decreases (Osaki et al. 2011;
Teichert et al. 2007). However, the model neuron did not show
this trend. The peak of its frequency tuning curve was not
affected by the size of the grating patch in our simulations.

The orientation and frequency bandwidths of real neurons
are invariant from the contrast of the grating patches to a good
approximation. This fact was an important motivation for the
development of the divisive normalization model (Heeger
1992b). The invariance of the orientation bandwidth has been
replicated in many physiological results (phenomenon 17, Fig.
14, C and D; Alitto and Usrey 2004; Anderson et al. 2000; Li
and Creutzfeldt 1984; Sclar and Freeman 1982; Skottun et al.
1987; Somers et al. 1995; Troyer et al. 1998). On the other
hand, some physiological studies identified a relatively weak
but statistically significant trend in the direction of narrowing
the spatial-frequency bandwidths of many real neurons as the
contrast decreases (phenomenon 18, Fig. 14, G and H; Albrecht
and Hamilton 1982; Sceniak et al. 2002; Skottun et al. 1987).
These trends in the neurophysiological data could be emulated
to some extent by the model neuron with a nonstandard
parameter set with smaller h� (40°) and hF (1.0 oct). Under the
standard parameterization, the bandwidths of the DNM neuron
in both domains became slightly wider as the contrast de-
creased (Fig. 14). Note that these trends in the neurophysio-
logical data are rather weak and that a significant subset of the
neurons in V1 show opposite trends (Alitto and Usrey 2004;
Kim 2011; Sceniak et al. 2002; Sclar and Freeman 1982).
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The effect of stimulus contrast on the orientation and fre-
quency bandwidths depends on the 
 parameter in the numer-
ator and in the denominator of Eq. 15. The bandwidths of the
numerator become narrower as the contrast decreases if 
 � 0
(the iceberg effect; Heeger 1992a; Sceniak et al. 2002; Tadmor

and Tolhurst 1989) and become wider if 
 � 0. The band-
widths of the model neuron are also widened by the denomi-
nator depending on stimulus contrast. Recall that the widening
effect of the denominator becomes stronger as the denominator
becomes more sharply tuned. The tuning function of the
denominator broadens as the contrast decreases, and it be-
comes a constant (�nd) at zero contrast. This contrast depen-
dence of the widening effect of the denominator is consistent
with the trend that the bandwidths of the model neuron become
narrower as the contrast decreases.

Pollen and Ronner (1982) measured the spatial-frequency
tuning of real neurons using sinusoidal and square gratings.
They observed that, when measured with square gratings, the
tuning function showed two peaks in the spatial-frequency
domain (phenomenon 19). The primary peak appeared at the
neuron’s preferred frequency, and the secondary peak appeared
at one-third of the preferred frequency (Fig. 15B). The height
of the secondary peak was between 0.6 and 0.8 times the height
of the primary peak for most neurons. The secondary peak of
some neurons was even as high as the primary peak. These
observations partly agree with the predictions of the linear
rectification model (see Linear rectification model of simple
cells and energy model of complex cells). According to Fourier
series decomposition, a square grating with frequency fsq can
be represented by a sum of sinusoidal gratings at the odd
harmonics of fsq with magnitudes proportional to reciprocals of
the orders of the harmonics: �j�0

� �2j�1��1sin�fsq/�2j�1��.
Thus if a neuron satisfying the assumption of the linear
rectification model is tuned to a sinusoidal grating with fre-
quency fsin, it is predicted that its tuning function to a square
grating should show multiple local maxima in the spatial-
frequency domain. The positions of these maxima are fsin/(2j �
1) and their heights are 1/(2j � 1) of the global maximum at
fsin, where j is a nonnegative integer. However, the results of
Pollen and Ronner (1982) showed some deviations from the
linear predictions. Only the primary (j � 0) and secondary
peaks (j � 1) of the tuning functions could be reliably identi-
fied in the data, and the heights of the observed secondary
peaks were higher than the predicted height. The DNM neuron
with a nonstandard parameter set (hf � 0.8, hF � 0.4) can
emulate these results, including the discrepancy to some extent
(Fig. 15A). The tuning function of the model neuron shows the
secondary peak at one-third of the tuned frequency, and its
height is ~0.9 of the height of the primary peak. On the other
hand, the model neuron also showed the tertiary peak at
one-fifth of the tuned frequency (j � 2). Note also that the
DNM neuron responds more strongly to the square grating than
the sinusoidal grating, especially when their contrast is mod-
erately low (Fig. 15C). The contrast response function of the
DNM neuron with the square grating shifts horizontally to the
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Fig. 13. Orientation and spatial-frequency tuning functions of the divisive
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neuron (replotted from Okamoto et al. 2009, Fig. 1, anesthetized cat; error
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diameters (indicated in key). C and F: effect of stimulus size on the bandwidths
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drive (Eq. 9), and the suppressive drive (Eq. 18). The contrast of the grating
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A and D. (See phenomena 15 and 16 in Table 1).
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left (phenomenon 20). This is because the outputs of both
stimulus and suppressive drives are always larger to the square
grating than to the sinusoidal grating with the same frequency
and orientation (see Eq. 5).17

CROSS-ORIENTATION SUPPRESSION. The responses of real neu-
rons in V1 to a grating (signal) tend to be suppressed by
another grating (mask) superimposed on the signal grating
within the neuron’s measured RF. This cross-orientation sup-
pression is a topic of active investigation (e.g., Bonds 1989;
DeAngelis et al. 1992; De Valois and Tootell 1983; Li et al.
2006; Koch et al. 2016; Morrone et al. 1982; Priebe and Ferster
2006; see The suppressive drive for additional references and
discussion). Figure 16D provides a paradigmatic example

17 This prediction seems to be consistent with psychophysical results show-
ing that human performance in contrast detection is better with a square grating
than with a sinusoidal grating (Campbell and Robson 1968). Note, however,
that the square grating is expected to stimulate a wider variety of V1 neurons
because a square grating is composed of multiple sinusoidal gratings, so these
psychophysical results can be explained by properties of either single V1
neurons or a population of V1 neurons.
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Fig. 14. Orientation and spatial-frequency tuning functions for gratings with
different contrasts (indicated in key). A and E: the divisive normalization
model (DNM) neuron with the standard parameter set. B and F: the DNM
neuron with a modified parameter set (h� � 40°, hF � 1.0 oct). C: orientation
tuning of a simple striate cell (replotted from Skottun et al. 1987, Fig. 3A,
anesthetized cat). G: frequency tuning of a simple striate cell (replotted from
Skottun et al. 1987, Fig. 4A, anesthetized cat). D and H: effect of stimulus
contrast on the bandwidths of the real neurons in C and G and of the DNM
neuron in the orientation (D) and frequency (H) domains for the 2 parameter
sets (key). A, B, E, and F: the size of the grating patch was 2.88°. The spatial
frequency of the grating was 2.0 cpd for A and B, and its orientation was 0° for
E and F. (See phenomena 17 and 18 in Table 1.)
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Fig. 15. Spatial-frequency tuning functions for sinusoidal and square gratings
of the model neuron with a modified parameter set (hf � 0.8, hF � 0.4) (A) and
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(DeAngelis et al. 1992). The dashed line In Fig. 16D plots the
orientation tuning curve (cf. Fig. 2A) of a complex cell mea-
sured with a simple grating with the cell’s preferred frequency
and spatial extent; the solid line plots the responses of the same
cell to plaid stimuli composed of two superimposed gratings: a
signal and a mask. The strength of the suppression effect is
measured relative to the baseline response to the signal alone
(depicted by the horizontal dotted line in Fig. 16D). The signal
always has the cell’s preferred orientation and frequency,

whereas the parameters of the mask are manipulated to esti-
mate the tuning properties of the suppression effect. To isolate
the latter, experimentalists use masks that elicit little or no
response when presented alone. The default choice is to use a
mask whose orientation is orthogonal to the neuron’s preferred
orientation. When the goal is to measure the orientation tuning
of the suppressive effect, however, the mask must differ from
the signal in spatial frequency (e.g., DeAngelis et al. 1992)
and/or temporal frequency (e.g., Bonds 1989).
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Fig. 16. Tuning functions of the cross-orientation suppression effect. In all panels, the dashed gray line plots the excitatory tuning function obtained with
nonmasked signal gratings, whereas the solid black line plots the neuron’s response to a plaid stimulus consisting of a preferred (fixed) signal and a superimposed
mask grating. The horizontal axis represents the orientation/frequency of the signal or mask, respectively. The empirical tuning functions (D, G, and J) were
measured in separate sessions with different grating contrasts. The horizontal dotted lines in these graphs represent the neuron’s response to a nonmasked signal
with the same contrast as the signal component of the plaids in the suppression sessions (see DeAngelis et al. 1992 for details). The cross-orientation suppression
effect is the mask-induced decrement relative to this baseline. A: orientation tuning of the DNM neuron with standard parameters (signal c � 15%, mask
c � 25%). B: orientation tuning of a DNM neuron with modified parameters (nn � nd � 10, h� � 55, M � 11; signal c � 15%, mask c � 25%). C: orientation
tuning of a DNM neuron with modified parameters (h� � 90, hf � 1.0; signal c � 15%, mask c � 25%). D: orientation tuning of a complex cell (replotted from
DeAngelis et al. 1992, Fig. 7, C and D, anesthetized cat; signal f � 1.25, mask f � 0.6 cpd). E: frequency tuning of the DNM neuron with standard parameters
(cf. A; signal c � 10%, mask c � 25%). F: frequency tuning of a DNM neuron with modified parameters (hF � 1.0, h� � 90, R � 50; signal c � 10%, mask
c � 25%). G: frequency tuning of a simple cell (DeAngelis et al. 1992, Fig. 3, A and B; signal c � 10%, mask c � 25%). H and I: orientation and frequency
tuning of an augmented DNM neuron that had an extra parameter �F so that the pooling kernel of the suppressive drive could be set independently from the
preferred frequency of the stimulus drive (APPENDIX E; �F � �1 oct, hF � 1.0, � � 0.03, M � 3; signal c � 15%, mask c � 25%). Note that the preferred
frequency of the augmented DNM neuron with �F � �1 oct is 2.46 cpd and is clearly different from the preferred frequency of the stimulus drive F* � 2.0 cpd.
J: frequency tuning of the same complex cell as D (DeAngelis et al. 1992, Fig. 3, C and D; signal c � 15%, mask c � 25%). All frequency tuning functions
were obtained with plaids with orthogonal signal and mask orientations. All simulated orientation tuning functions were obtained with signal f � 2, mask f � 1
cpd (except for H: signal f � 2.46, mask f � 1.23 cpd). Stimulus size was 2.88° in all simulations. (Note: signal/mask f � frequency of the respective component
of a plaid, c � contrast.) (See phenomena 21 and 22 in Table 1.)
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The basic empirical result is that for many V1 cells it is
possible to find a broad range of orientations and frequencies
such that a mask with these parameters elicits no response from
the neuron when presented alone but suppresses the response
when superimposed on the signal grating. This suggests there
is a suppression mechanism (or, more likely, a combination of
several mechanisms as discussed in The suppressive drive) that
operates in a broad region of the Fourier domain that envelops
and exceeds the excitatory tuning of the neuron along both
orientation and frequency dimensions. The DNM accounts for
this by positing separate bandwidth parameters (h� and hF in
Table 2) for the respective pooling weights of the suppressive
drive (Eqs. 21 and 20). Note that the cross-orientation suppres-
sion mechanism should be distinguished from the cross-orien-
tation suppression effect. The former is a theoretical construct
that is reified in the suppressive drive of the DNM, whereas the
latter is a measurable mask-induced reduction of the firing rate
relative to a baseline. We probe the tuning properties of the
suppression effect to test the model and to estimate physiolog-
ically plausible ranges for various model parameters, keeping
in mind that the effect depends on nonlinear interactions
among multiple mechanisms.

The strength of suppression depends on orientation for some
V1 neurons (e.g., the complex cell in Fig. 16D).18 In nearly all
such cases, the suppression is weakest at mask orientations that
are orthogonal to the preferred signal orientation (DeAngelis et
al. 1992). The most suppressive region is centered on the
preferred orientation. This motivates the DNM specification
that the peak of the orientation pooling kernel of the suppres-
sive drive is centered on the preferred orientation �* of the
stimulus drive (Eq. 21). The DNM performance with standard
parameters is plotted in Fig. 16A. The model can account for
the qualitative features of the orientation tuning curves of
cross-orientation suppression (phenomenon 21 in Table 1; see
Busse et al. 2009; Heeger 1992b for earlier accounts based on
alternative formulations of the DNM).

The strength of the suppression effect also provides valuable
information. It can be quantified by a suppression index SI � 1
� R(I* � I  )/R(I*), where R is the firing rate of the neuron
and I* and I  are the signal and mask gratings (see Koch et al.
2016). The suppression index ranges from SI � 0 when the
mask has no effect to SI � 1 when the mask shuts down the
neuron completely. For example, SI of the maximum suppres-
sion effect observed from the V1 neuron in Fig. 16D exceeds
0.95 (see APPENDIX E for details), whereas that from the DNM
with the standard parameter set in Fig. 16A is ~0.43. Note that
SI depends strongly on the experimental protocol (see, e.g.,
Table 1 in Priebe and Ferster 2006 for descriptive statistics).
Following DeAngelis et al. (1992), we used 25% mask contrast
and 15% signal contrast in our simulations of Fig. 16, A–C, H,
and I. The DNM can leverage this difference in contrasts to
produce near-complete suppression (Fig. 16B). However, this
requires implausibly high values for the exponent parameters
(e.g., nn � nd � 10; see APPENDIX E for details).

The model’s difficulty in producing strong cross-orientation
suppression can be traced also to the restrictive specification of

the frequency pooling weights wFi
of the suppressive drive.

Note that Eq. 20 specifies a Gaussian kernel centered on the
preferred excitatory frequency F*. There are indeed real V1
neurons for which the most suppressive frequency is close to
the preferred excitatory frequency, e.g., the simple cell in Fig.
16G (DeAngelis et al. 1992), and the model can reproduce this
pattern (phenomenon 22, Fig. 16F). However, the assumption
that the most suppressive frequency always coincides with the
preferred signal frequency is too restrictive, because the two
frequencies have been shown to diverge for many V1 neurons
(DeAngelis et al. 1992; De Valois and Tootell 1983; Morrone
et al. 1982). For the complex cell in Fig. 16J, for example, the
most suppressive mask frequency (0.6 cyc/°) was one full
octave below the preferred frequency (1.25 cyc/°; Fig. 3, C and
D in DeAngelis et al. 1992). Such large eccentricities cannot be
emulated by the standard DNM, but it is straightforward to add
a free parameter to Eq. 20 to offset the center of the pooling
kernel. (See Eq. E3 in APPENDIX E, where the new parameter is
denoted �F.) The augmented model can emulate both the
eccentric frequency curve (Fig. 16I) and the near-complete
suppression in the orientation curve (Fig. 16H) with a common
parameter set with default exponents (nn � nd � 2, �F � �1,
hF � 1, � � 0.03, M � 3). Note that the augmented model’s
ability to emulate both effects with common parameters is
important because the respective physiological data in Fig. 16,
D and J, were recorded from a single complex cell (DeAngelis
et al. 1992).

Consider the cross-orientation suppression for orthogonal
plaids composed of signal and mask gratings with equal con-
trasts and equal frequencies. The suppression effect produced
by the DNM becomes stronger as the grating contrast of such
an isocontrast orthogonal plaid increases (Fig. 17). The effect
produced by the DNM with the standard parameter set is
relatively weak (Bonds 1989) compared with many real V1
neurons (Koch et al. 2016; Priebe and Ferster 2006). The
median SI in one sample of 32 simple cells in cat V1 (Priebe
and Ferster 2006) was SI � 0.23 for low-contrast (8%) plaids
and SI � 0.32 for high-contrast (32%) plaids. In the DNM
framework, the relative weakness of the suppression effect can
be traced in part to the orientation pooling weights w�i

(Eq. 21)
in the standard parameter set. The pooling weights are maximal

18 The strength of suppression is virtually independent of the mask orien-
tation for many V1 neurons (e.g., Bonds 1989; DeAngelis et al. 1992). To
promote such independence in the DNM (e.g., Fig. 16C), set h� � 90° to
specify uniform pooling weights w�i

in Eq. 21.
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for the channels tuned to the preferred orientation of the
stimulus drive and are minimal for those tuned to the orthog-
onal (i.e., mask) orientation. The weights for the channels
stimulated by the mask grating increase as the orientation
pooling bandwidth parameter h� increases. In the limit when
h� � 90°, the weights become uniform and the DNM can
produce SIs in the range 0.2 � SI � 0.4 (dashed line in Fig.
17B), which is consistent with the median SIs reported by
Priebe and Ferster (2006).

The mask grating affects the contrast response function (CF)
of V1 neurons (phenomenon 23; Carandini 2004; Freeman et
al. 2002; Morrone et al. 1982). It has been shown that variants
of the DNM can account for this effect (Carandini et al. 1997;
Carandini and Heeger 2011; Freeman et al. 2002; Heeger
1992b). Figure 18B shows representative physiological data
(Freeman et al. 2002), and Fig. 18A shows our simulation
results of a DNM neuron with the standard parameter set. Note
that the empirical CFs in Fig. 18B are truncated on the left
because the experimental protocol did not include stimuli with
near-zero grating contrasts. The CF of the DNM neuron shifts
rightward/downward19 as the mask contrast cm increases. The
amount of this shift depends nonlinearly on cm: the shift is
negligible for cm � 12% and substantial for cm 	 12%. This
pattern agrees with the physiological results. When the neu-
ron’s response is plotted as a function of the mask contrast cm
(Fig. 18, C and D), the resulting graphs shift upward and scale
up vertically as the contrast of the signal grating increases.

SURROUND SUPPRESSION. The responses of real neurons to a
grating patch within the neurons’ measured RF tend to be
suppressed by an annular grating surrounding the RF. This
surround suppression tends to be strongest when the orientation
and frequency of the annular grating are the same as those the
neuron is tuned to (phenomena 24 and 25; Blakemore and
Tobin 1972; Cavanaugh et al. 2002b; DeAngelis et al. 1994; Li
and Li 1994; Nelson and Frost 1978; Ozeki et al. 2004, 2009;
Self et al. 2014; Sillito et al. 1995). The experimental protocols
are similar to those for cross-orientation suppression, except
that the mask (annular) grating surrounds the signal rather than
being superimposed on top of it. The ranges of the surround
suppression in both orientation and frequency are wider than
the respective tuned bandwidths. These trends were captured
by the DNM neuron with standard parameters (Fig. 19).

The contrast response function (CF) of real neurons is
affected by the contrast (phenomenon 26, Fig. 20; Carandini
2004; Cavanaugh et al. 2002a; DeAngelis et al. 1994) and the
orientation (phenomenon 27, Fig. 21; Cavanaugh et al. 2002b)
of an annular grating surrounding the classical RF. The CF of
the DNM neuron shifts rightward/downward as the contrast
of the annular grating increases (Fig. 20A; see Carandini and
Heeger 2011 for an alternative DNM variant fitted to the
same type of physiological data). This shift is larger when
the annular grating is parallel to the preferred orientation of
the DNM neuron than when it is orthogonal (Fig. 21A).
These trends agree with the physiological results in Fig. 20B
and Fig. 21B. The slope of the CF of the model neuron can
be modulated by the annular grating, too. With a different
parameter set (nn � nd), the CF of the DNM neuron became

shallower as the contrast of the annular grating increased
(Fig. 20C). The same trend has been observed for some V1
neurons (Fig. 20D; Carandini 2004). It is worth pointing out
that that the contrast affects the strength of surround suppres-
sion and its orientation tuning. Specifically, Fig. 21A shows
that the suppression effect of the DNM neuron is weaker and
more orientation dependent at higher contrasts (e.g., by factors
of 0.72 for parallel and 0.93 for orthogonal at 100% contrast)
compared with lower contrasts (e.g., 0.34 for parallel and 0.45
for orthogonal at 10% contrast). The same trend is detectable
for the V1 simple cell in Fig. 21B.

Because cross-orientation and surround suppression show
analogous trends in real V1 neurons, they are modeled jointly
by the aggregate suppressive drive in Eq. 18. Our simulations

19 The shift direction is neither strictly horizontal nor strictly vertical (see
also Freeman et al. 2002). Graham (2011, Fig. 8) reviews the mathematical
conditions for strict shifts along linear and logarithmic coordinate axes.
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Fig. 18. Effect of cross-orientation suppression on the contrast response func-
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90°, and their spatial frequency was 2.0 cpd. (See phenomenon 23 in Table 1.)
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showed that Eq. 15 as presently formulated can account for
many signature patterns of the static (steady state) responses
associated with both cross-orientation and surround suppres-
sion to some extent. A strong cross-orientation suppression
effect could be emulated by the DNM with a modified param-
eter set (Fig. 16, B and F) or with an augmentation of the model
specification itself (APPENDIX E; Fig. 16, H and I). In fact,
converging physiological evidence suggests that the two types
of suppression arise from distinct mechanisms (see The sup-
pressive drive for references and discussion). We need more
systematic studies that compare these two types of suppression
to determine whether and how they can be integrated into a
single functional model.

It is also worth pointing out that even though Eq. 15 has only
one suppressive term, this term produces quantitatively non-
identical response patterns when probed with a circular grating
patch (CROSS-ORIENTATION SUPPRESSION) compared with an annu-
lar grating with a gray “hole” (SURROUND SUPPRESSION). Figure
22 compares the orientation and spatial-frequency tuning of the
suppressive drive for the grating patch and the annular grating
with the standard DNM parameters. The orientation bandwidth
is slightly wider for the patch (86.4°, cross-orientation suppres-
sion) than the annulus (78.9°, surround suppression), whereas
the frequency bandwidth is narrower for the patch (2.10 oct)
than the annulus (2.44 oct). These effects arise from differ-
ences in the visual stimuli used in the respective experimental
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protocols rather than from separate suppressive terms in Eq.
15. The grating patch is not large enough to cover the entire
spatial integration fields of the channels tuned to low spatial
frequencies (Eqs. 3 and 4).

RECEPTIVE FIELDS OF SIMPLE CELLS. The RF of a real simple cell
is composed of bright- and dark-excitatory subregions. This
composition has been mapped with local stimulus probes such
as a light spot (Hubel and Wiesel 1959; Volgushev et al. 1996),
light and dark spots (Lampl et al. 2001), a light bar (Andrews
and Pollen 1979), light and dark bars (Glezer et al. 1982;
Kulikowski and Bishop 1981; Kulikowski and Vidyasagar
1986; Movshon et al. 1978b; Tadmor and Tolhurst 1989), and
the reverse correlation method (DeAngelis et al. 1993a, 1993b;
Gardner et al. 1999; Jones and Palmer 1987b; Moore and
Freeman 2012; Nishimoto et al. 2006; Ringach 2002; Smyth et
al. 2003). The classical RF of the DNM simple cell was also
mapped with these methods (Figs. 23 and 24, phenomena 28
and 29). Note that the firing rate of a real simple cell becomes
lower than its maintained discharge (M<
=nn⁄�nd) when the
light spot stimulates its dark-excitatory subregions (Hubel and

Wiesel 1959; Fig. 23) or the light and dark bars stimulate its
dark- and bright-excitatory subregions, respectively (Andrews
and Pollen 1979; Fig. 25C). This effect can be observed with
the DNM simple cell only when its maintained discharge in the
absence of external stimulation is high enough to reveal the
inhibitory effect of a light-spot probe. This occurs when
M<
=nn⁄�nd��0.

Consider a hypothetical simple cell that acts as a purely
linear filter of the visual stimulus. Under this linearity assump-
tion (cf. Linear rectification model of simple cells and energy
model of complex cells), the bandwidths in the orientation and
spatial frequency-domains can be derived from the 2D com-
position of its bright- and dark-excitatory subregions in its RF
in the image domain (Eqs. 3 and 4; Graham 1989; Lathi 2005).
However, the derived bandwidths of real simple cells tend to
be wider than these measured directly with gratings of various
orientations and frequencies (Gardner et al. 1999; Nishimoto et
al. 2006; Ringach 2002; Tadmor and Tolhurst 1989; see also
ORIENTATION AND SPATIAL-FREQUENCY TUNING). These results sug-
gest that real simple cells are nonlinear. This discrepancy of the
bandwidths is also observed with the model simple cell (Fig.
24 and Fig. 25B). The derived bandwidths in the orientation
and the frequency domains were 42.6° and 1.53 oct with the
reverse correlation method and were wider than those mea-
sured with a grating (31.8° and 1.11 oct). This trend could be
observed from the DNM cell if nn � 1 (see Gardner et al.
1999). Note that the derived bandwidths were rather close to
the specified bandwidths of the stimulus drive (40° and 1.5
oct). Several other parameter sets (including nn � 1) were
tested, and this similarity was observed reliably.

Note that the stimulus probe itself could also affect the
results. Recall that the RF could be measured with a bar as the
probe. However, as the bars become wider, the derived band-
width became wider and the tuned frequency derived was
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Fig. 21. Surround-suppression effects on the contrast response functions for
different orientations of the annular grating (indicated in key). A: the divisive
normalization model (DNM) neuron with standard parameters. B: a simple cell
(replotted from Cavanaugh et al. 2002b, Fig. 5A, anesthetized macaque; error
bars � 	SE). A: orientation of the center grating was 0°. Spatial frequency of
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5.76°. (See phenomenon 27 in Table 1.)
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Fig. 20. Surround-suppression effects on the contrast response functions for
different contrasts of the annular grating. The contrast of the central disk is
plotted on the x-axes, and the contrast of the annular surround is indicated in
the key. A: the model neuron with the standard parameter set (cf. Table 2). B:
a complex cell in cat V1 (replotted from Carandini 2004, Fig. 6). C: the model
neuron with a modified parameter set (nn � 2.8, nd � 3.0, M � 10). D: a
complex cell in cat V1 (replotted from Carandini 2004, Fig. 7). A and C:
orientation and spatial frequency of the center and annulus gratings were 0°
and 2.0 cpd. Diameter of the center grating patch was 0.81° and is equal to the
measured RFs of the model neuron for both parameter sets. Size of the annulus
grating was 5.76°. (See phenomenon 26 in Table 1.)
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lower (Fig. 25C). This underestimation of the tuned frequency
was also observed in the physiological data (Tadmor and
Tolhurst 1989). The derived bandwidth was also affected by
the contrast between the black and white bars (Fig. 25D).

Summary and discussion. The results of our simulation
experiments show that the model neuron based on the divisive
normalization Eq. 15 can account for many physiological
phenomena (Table 1) with a standard parameter set (Table 2).
A few other phenomena can also be accounted for, but they
require customized parameter sets. Certain aspects of the
frequency tuning function of the cross-orientation suppression
effect require an additional free parameter (Fig. 16, H and I;
see APPENDIX E for details). On the basis of these simulation
results and of mathematical analyses, we can make some
falsifiable predictions that can be used to test the divisive
normalization model (DNM).

All predictions involve probing a single neuron with multi-
ple stimuli. The theoretical constraints stem from the fact that
the model parameters must be fixed for each individual neuron.
Thus certain patterns are expected to occur together in the
responses of a given neuron because they all depend on a single
model parameter. In particular, the baseline parameter 
 in Eq.
15 gives rise to interesting constraints. We have shown that the
following three phenomena can be produced by the model only
when 
 is sufficiently large:

1) The dark-excitatory subregions of a simple cell probed
with a single light spot (Hubel and Wiesel 1959) can be

observed only when M<
=nn⁄�nd��0. This condition ensures
that the DNM simple cell has a substantial maintained dis-
charge in the absence of external stimulation. This is necessary
to reveal the inhibitory effect of a light-spot probe (phenome-
non 28, Fig. 23).

2) The supersaturation effect (phenomenon 8, Fig. 10) can
occur in the model only when 
 � �1 � �nd�nn⁄nd � 1 (Eq. 23).
Recall from CONTRAST RESPONSE FUNCTION that this effect refers
to the nonmonotonicity of the contrast response function of
some V1 neurons. (Note that the majority of V1 neurons have
monotonically increasing CFs.)
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3) Finally, the widening of the bandwidths in the orientation
and spatial-frequency domains with decreasing stimulus con-
trast (phenomenon 18, Fig. 14, D and H; see also phenomenon
17) can occur in the model only when 
 � 0.

Because of their dependence on a common parameter, the
DNM predicts a correlation among these three phenomena if
they are tested for each individual cell in a sample of V1
neurons recorded in a physiological experiment.

These interlocking patterns are methodologically important
because they show that the DNM is constrained enough to be
falsifiable even though it has 10 free parameters that give it the
flexibility it needs to account for the diversity of V1 neurons.
This novel theoretical result emerges from the examination of
a comprehensive suite of phenomena within the framework of
a single model with consistent parameters.

The model also provided alternative interpretations of a few
phenomena observed in physiological studies. For example, the
effect of stimulus size on the orientation and frequency band-
widths of real V1 neurons (see Fig. 13). The measured band-
widths depend on the size of the grating patch, and the size that
maximizes the bandwidths is larger than the measured RF of the
neuron. This occurs because RF mapping methods tend to
underestimate the true extent of the weighting function
(WF) of the linear filtering stage of the model neuron. The
periphery of the WF of the model neuron is hidden by an
annular region of the surround suppression, which narrows
down the measured RF of the model neuron. This means that
the stimulus patch must be larger than the measured RF to
fill the true WF. Note that our simulations show that the
surround suppression itself actually makes the bandwidths
of the DNM neuron wider (see ORIENTATION AND SPATIAL-
FREQUENCY TUNING).

The tuning bandwidths of real simple cells are often nar-
rower when measured directly in the orientation and spatial-
frequency domains compared with those derived from the
mapped spatial patterns of the RFs (see Fig. 25). This discrep-
ancy from linearity has often been explained by the exponen-
tiation of the stimulus drive with nn � 1 (DeAngelis et al.
1993b; Gardner et al. 1999; Moore and Freeman 2012; see also
Fig. 2) and/or by the so-called iceberg effect, which occurs in
our model when 
 � 0 (Carandini and Ferster 2000; Sompo-
linsky and Shapley 1997; Tadmor and Tolhurst 1989; Volgu-
shev et al. 2000). If 
 � 0, the measured bandwidths of the
model neuron become narrower because its tuning curves shift
downward (Tadmor and Tolhurst 1989), and the bandwidths
derived from the measured RF of the model neuron become
wider because the measured RF itself becomes smaller in size
(Bringuier et al. 1999). Note that 
�� � 1 and the iceberg
effect cannot be very large. Otherwise, it would not be possible
to measure the RF of the model neuron with a local stimulus
probe or the reverse correlation method because the outputs of
the stimulus drive to these images would be too small. The
present simulations (Fig. 25) show that the model can produce
such discrepancy from linearity even when 
 � 0. Across its
parameter range, the model produces discrepancy from linear-
ity due to the exponentiation with nn � 1 in the numerator of
Eq. 15 (DeAngelis et al. 1993b; Gardner et al. 1999; Moore
and Freeman 2012). Besides, the denominator of the DNM also
plays an important role for the discrepancy. The tuning curves
of the DNM can be wider than those of the stimulus drive even
with nn � 1 if the tuning curves of the denominator (see Fig.
22) are narrowly tuned.

A few studies have shown that the size of the grating patch
also bears some relationship to the preferred frequency of real
neurons. The peak of the frequency tuning curve of real
neurons tends to shift to a higher frequency as the size of the
grating patch decreases (Osaki et al. 2011; Teichert et al.
2007). Also, the peak of the size tuning curve of the real neuron
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tends to shift to a smaller size if the spatial frequency of the
grating is higher than the preferred frequency of the neuron
(Osaki et al. 2011). These trends were not observed with the
DNM neuron used in the simulation experiments. Such trends,
however, can be emulated by a model with some additional
flexibility. For example, the suppressive drive of the DNM
model can be modified so that the suppression in the spatial-
frequency domain changes depending on the eccentricity from
the center of the RF. These trends can also be expected to be
emulated by the modified DNM if the peak of the suppression
in the spatial-frequency domain shifts to a higher frequency as
eccentricity increases. Another possible modification involves
the stimulus drive. Note that Naito and Sato (2015) pointed out
that model neurons should be composed of multiple Gabor
filters to model these trends. These filters can be tuned to
different spatial frequencies, and the sizes of their WFs can be
correlated with the tuned frequencies, i.e., smaller WFs are
tuned to higher frequencies. Also, following the suggestions of
Naito and Sato (2015), analogous modifications can be made to
the DNM, composing its stimulus drive from multiple Gabor
filters. This latter modification would change the properties of
the DNM quite radically.

It is instructive to compare the stimulus and suppressive
drives in the DNM Eq. 15. These two terms were differently
affected in our simulations by the size and spatial frequency of
a grating (see phenomena 4 and 16; Fig. 5C, Fig. 8C, Fig. 13,
C and F, and Fig. 22). The frequency bandwidth of the
stimulus drive becomes narrower as the diameter of the grating
patch increases, whereas that of the suppressive drive becomes
wider (Fig. 13). This difference arises because the stimulus
drive is a single Gabor filter (Linear rectification model of
simple cells and energy model of complex cells) whereas the
suppressive drive comprises multiple filters (or channels, Di-
visive normalization model) in our formulation of the DNM.
The channels have different preferred frequencies but the same
frequency bandwidth. Because of the common bandwidth, the
size of the spatial integration field varies inversely with the
preferred frequency across channels (Eq. 4). Consequently,
stimuli with intermediate diameters cannot stimulate the lower-
frequency channels well but do stimulate the higher-frequency
channels. The DNM can be modified so that its stimulus drive
incorporates multiple Gabor filters tuned to different spatial
frequencies (see The Stimulus Drive for a review of physio-
logical studies suggesting this idea). This would make the
DNM considerably more flexible and hence able to fit a wider
range of physiological data. However, it might also produce
some undesirable predictions. For example, the frequency
bandwidth of such a modified DNM is predicted to become
wider as the diameter of the grating patch increases, which
would be inconsistent with the overall trend observed in V1
neurons (Osaki et al. 2011; Fig. 13, phenomenon 16). See The
Stimulus Drive for further discussion.

General Discussion

Our simulation experiments demonstrated that the divisive
normalization model (DNM) can account for a comprehensive
set of neurophysiological studies of both simple and complex
cells in V1 (Table 1). Moreover, a mathematical analysis of Eq.
15 predicts interdependence between certain observable phe-
nomena. In Simulation Experiments, we explained how these

predictions can be tested experimentally, which establishes that
the standard formulation of the DNM specified in Divisive
normalization model is a falsifiable theory. If this formulation,
especially Eq. 15, is modified, the concrete mathematical
results proven in the appendices will no longer apply. It seems
plausible, however, that analogous results would hold for any
formulation based on similar principles. In other words, our
theoretical conclusions probably extend to the entire class of
models based on a combination of linear filtering, half-wave
rectification and squaring, and response normalization (Caran-
dini et al. 2005). Our results ultimately rest on the fact that
although adjustable parameters are needed to accommodate the
diversity across neurons, they must be fixed for each individual
neuron. This fixedness gives rise to falsifiable constraints when
a single neuron is probed with a judiciously chosen battery of
stimuli.

The DNM qualitatively emulates most of the empirical
phenomena listed in Table 1 with the standard parameter set in
Table 2. Quantitative comparisons of the DNM with real
neurons are also possible, but it would require quantitative
estimation of all parameters of the DNM for individual neurons
from physiological data. Potentially, the quantitative evalua-
tion of the DNM allows us to compare it with other models of
V1 neurons. The interpretability of such quantitative tests,
however, would depend on the qualitative validity of the
models.

Correlation among model parameters. The parameters of
the model are conceptually independent from one another, but
physiological studies have shown correlations among their
empirical counterparts. These correlations can potentially de-
crease the number of independently adjustable parameters or
limit the ranges of these parameters. This subsection briefly
reviews some studies that suggest correlations among various
DNM parameters.

The preferred spatial frequency F of the divisive normaliza-
tion model correlates with some parameters of the contrast
response function (CF). Dean (1981) reported that the pre-
ferred spatial frequencies of neurons in cat striate cortex
correlated positively with their contrast threshold and nega-
tively with the slope of their CF. Consider the hyperbolic ratio
model for simplicity (Eq. 12). Its mathematical analysis shows
that the hyperbolic ratio model can account for both these
correlations if the semisaturation contrast parameter �HB cor-
relates positively with the preferred frequency F across the
population of model neurons (see Hyperbolic ratio model).
Some studies have shown that the bandwidths of V1 neurons
tend to be narrower in neurons with higher preferred spatial
frequencies (De Valois et al. 1982a; Kulikowski and Bishop
1981; Kulikowski and Vidyasagar 1986; Yu et al. 2010). This
effect can be emulated by the DNM if either 
, nd, or hf
decreases or �, nn, or hF increases as the preferred frequency F
increases. (See Table 2 for the meaning of these symbols.)
Note that the tuning bandwidths with respect to spatial fre-
quency and orientation correlate with one another (Zhu et al.
2010). Both of these bandwidths would be affected together if
�, 
, nn, or nd covaries with F.

The RF locations of V1 neurons affect their orientation and
frequency tuning. The DNM can emulate this by introducing a
correlation between the RF location parameters (X, Y) in Eq. 2
and the tuning preference parameters � and F. First, as the
retinal eccentricity of the locations increases the preferred
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frequencies of real neurons decrease (Henriksson et al. 2008;
Movshon et al. 1978b; Yu et al. 2010), and this correlation can
be represented well by the cortical magnification factor (Daniel
and Whitteridge 1961; Duncan and Boynton 2003; Schwartz
1980; Swindale 1996; Tootell et al. 1982). Next, the observed
distribution of preferred orientations has a preponderance of
vertical or horizontal preferences for neurons with RFs in or
near the fovea (De Valois et al. 1982b; Henry et al. 1974) and
a preponderance of radial orientations for neurons in the visual
periphery (Schall et al. 1986; see also Sasaki et al. 2006b for
fMRI results). The results of an fMRI study suggest that human
V1 contains more vertically tuned neurons than horizontally
tuned neurons (Yacoub et al. 2008). On the other hand, the
numbers of the vertical and horizontal neurons found in cat
striate cortex are almost equal (Li et al. 2003), whereas rat V1
apparently has a preponderance of neurons with horizontal
preferences (Girman et al. 1999). Note also that the neurons
tuned to vertical or horizontal orientations, and to high spatial
frequencies, have narrower bandwidths in the orientation do-
main compared with neurons tuned to oblique orientations (Li
et al. 2003; Orban and Kennedy 1981).

The stimulus drive. The present formulation of the divisive
normalization model specifies the weighting function of simple
cells as a 2D Gabor filter (Eq. 5). There are, however, some
other filters that can fit physiological data better than the Gabor
filter does (see Stork and Wilson 1990; Wallis 2001 for
reviews). All those models of simple cells use a linear filtering
stage (cf. Eq. 5) as their first processing step. This linear
filtering predicts that the cell’s response will be maximal for a
square-wave grating with their preferred frequency, orienta-
tion, and phase.

Simple and complex cells are represented in qualitatively
different ways in the present formulation of the DNM (see
Linear rectification model of simple cells and energy model of
complex cells). Hubel and Wiesel’s (Hubel and Wiesel 1959,
1962, 1968; also Bishop and Henry 1972) original classifica-
tion was based on 2D patterns of the classical RFs. Another
classification method was proposed later on the basis of the
temporal modulation of the firing rates evoked by a drifting
grating (e.g., Andrews and Pollen 1979; Maffei and Fiorentini
1973; Movshon et al. 1978a, 1978c). The key discriminating
factor is that simple cells show greater modulation than com-
plex cells. One line of empirical support for this idea is the
finding that the magnitude of the temporal modulation tends to
have a bimodal distribution across V1 cells. The classifications
based on these two methods often agree with one another
(Dean and Tolhurst 1983; De Valois et al. 1982a; Henry and
Hawken 2013; Mata and Ringach 2005; Sengpiel et al. 1997),
but the agreement is not always complete (see Chen et al. 2009;
Skottun et al. 1991 for reviews). Also, there are always some
neurons whose behaviors fall between the “pure” types defined
by either method (Crowder et al. 2007; Hietanen et al. 2013;
Kagan et al. 2002; Mata and Ringach 2005; Meffin et al. 2015;
Van Kleef et al. 2010). Note that some recent physiological
studies (Chance et al. 1999, 2000; Martinez and Alonso 2003;
Priebe et al. 2004; see also Mechler and Ringach 2002 for a
review) have suggested that the simple and complex cells are
better conceptualized as end points of a continuum rather than
as a categorical distinction. Mechler and Ringach (2002)
showed that the bimodal distribution can be explained by a
nonlinear monotonic transformation of the signal and that a

bimodal distribution does not necessarily imply two qualita-
tively different types of neurons. Also, the temporal modula-
tion of the firing rates can be affected by other properties of the
visual stimuli. For example, some complex cells show tempo-
ral modulation if the contrast of the drifting grating is low
(Crowder et al. 2007; Van Kleef et al. 2010; see also Henry and
Hawken 2013). The temporal phase of the modulation also
changes as a function of stimulus contrast (Albrecht 1995). The
temporal modulation of firing rate is also affected by stimula-
tion of the surround regions of the neuron’s classical RF
(Bardy et al. 2006). The effect of the surround stimulation on
the modulation can be either facilitatory or suppressive de-
pending on the individual neurons.

The numerator of our DNM Eq. 15 includes two types of
nonlinear operations: exponentiation and thresholding (see also
Eqs. 11 and 10). Both have been considered as possible
explanations of various physiological phenomena. These two
operations are not mutually exclusive (Finn et al. 2007; Heeger
1992a, 1992b; Priebe and Ferster 2008). The exponentiation
(with nn � 1) has strong empirical support in the measured
slopes of the contrast response functions of V1 neurons (Al-
brecht and Hamilton 1982; Busse et al. 2009), but the support
for the thresholding operation is not as clear cut. These two
nonlinear operations have been used to explain the observed
discrepancy between the tuning curves of real neurons mea-
sured directly in the frequency domain with test gratings and
the tuning curves derived from the empirical RFs, especially
with respect to spatial frequency (phenomenon 30; see Sum-
mary and discussion for further discussion). The thresholding
operation (
 � 0) predicts that both orientation and spatial
frequency bandwidths should become wider as the contrast of
the stimulus grating increases.20 The opposite trend is pre-
dicted when 
 � 0. On the other hand, the exponential
operation predicts contrast invariance of both bandwidths.
Thus neither operation by itself can fully explain the empiri-
cally observed relations between the stimulus contrast and the
two tuning bandwidths. The orientation bandwidths of the real
neurons tend to be invariant (Alitto and Usrey 2004; Anderson
et al. 2000; Li and Creutzfeldt 1984; Sclar and Freeman 1982;
Skottun et al. 1987; Somers et al. 1995; Troyer et al. 1998),
whereas there is a weak trend that their frequency bandwidths
become narrower as the contrast decreases (Albrecht and
Hamilton 1982; Sceniak et al. 2002; Skottun et al. 1987). Note
that these are population-level trends and there are many
individual neurons that show effects contrary to the prediction
based on 
 � 0 (Alitto and Usrey 2004; Kim 2011; Sceniak et
al. 2002; Sclar and Freeman 1982). We have shown that the
suppressive drive of the denominator also makes both band-
widths wider and that this widening effect becomes stronger as
the contrast increases. This widening effect can be controlled
with respect to orientation and frequency individually by ad-
justing the parameters of the suppressive drive. In sum, the
present DNM formulation has enough flexibility to account
qualitatively for the observed trends in both orientation and
frequency bandwidths.

20 Assuming the thresholding that occurs in Eq. 15 when 
 � 0 corresponds
to the physiological thresholding process that relates the membrane potential to
the firing rates in real neurons, the trends predicted for the bandwidths when

 � 0 may be obscured by the noise of the membrane potential (Anderson et
al. 2000; Finn et al. 2007; see also Carandini 2007).
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The stimulus drive in our DNM formulation is composed of
a single linear filter for simple cells (Eq. 5) and a pair of linear
filters for the complex cell (Eq. 7). The classic reverse corre-
lation method (DeAngelis et al. 1993a, 1993b; Gardner et al.
1999; Jones and Palmer 1987b) allowed mapping of the recep-
tive fields (RFs) of simple cells only. Recent theoretical devel-
opments of the reverse correlation make it possible to analyze
the RFs of complex cells as well, revealing pairs of Gabor-like
image filters in individual complex cells (e.g., Sasaki and
Ohzawa 2007; Touryan et al. 2002, 2005). These filters are
called subunits. Interestingly, such subunits have also been
observed in simple cells, too, and there can be more than two
subunits per cell (Chen et al. 2007; Fournier et al. 2014; Rust
et al. 2004, 2005; Vintch et al. 2015). Note that various other
physiological phenomena can be explained in terms of such
subunits. For example, the preferred spatial frequencies of
some neurons depend on the size of the test grating patch
(Osaki et al. 2011; Teichert et al. 2007). This trend can be
explained by multiple subunits tuned to different frequencies
(Naito and Sato 2015; see also Summary and discussion). The
spatial-frequency tuning (Bredfeldt and Ringach 2002; Frazor
et al. 2004; Mazer et al. 2002) and the orientation tuning
(Schummers et al. 2007) of some neurons change temporally
relative to the onset of the stimulus grating. This temporal
effect can be modeled by subunits with different temporal
properties. Neurons with weak orientation selectivity (e.g., Tan
et al. 2011) also respond to a grating whose orientation is
orthogonal to the neuron’s preferred orientation. Such neurons
can be modeled by adding a subunit with a radially symmetric
weighting function resembling the on/off-center units in the
LGN (Goris et al. 2015). Note also that some intracortical
interactions among V1 neurons can be modeled better with an
additive/subtractive operation in the numerator of the DNM
equation than in the denominator (Nassi et al. 2015; Sato et al.
2014). If two differently tuned neurons interact linearly, they
can appear as subunits of each other.

Neurons in V1 are tuned to gratings with particular orienta-
tions in static images, and many neurons are selective to the
motion direction of drifting gratings with specific temporal
frequencies (e.g., Jones et al. 2001; Livingstone 1998). Neu-
rons with strong direction selectivity can be modeled by a
drifting Gabor filter, which is a 2D Gabor filter whose phase
changes over time, whereas neurons with no direction selec-
tivity can be modeled by a 2D Gabor filter whose amplitude
modulates temporally between alternating polarities (Adelson
and Bergen 1985; Heeger 1992a, 1993). It has been shown that
these two 3D filters (temporal sequences of 2D filters) agree
with the spatial-temporal RFs of real neurons measured in
physiological studies (DeAngelis et al. 1993a, 1993b; McLean
et al. 1994). The spatial-temporal RFs that were measured in
these studies were qualitatively consistent with the preferred
directions and the preferred temporal frequencies of the neu-
rons, but nonlinear operations were required for quantitative fit.
Heeger (1993) used 3D filters in his version of the DNM, but
it was too simple to account for various other temporal prop-
erties. Some of these temporal properties can be captured by
introducing temporal dynamics of the CF-related parameters of
the DNM (Albrecht et al. 2002), the orientation tuning (Schum-
mers et al. 2007), the spatial-frequency tuning (Bredfeldt and
Ringach 2002; Frazor et al. 2004; Mazer et al. 2002), and some
interactions among them (e.g., Livingstone and Conway 2007).

The various normalization mechanisms in the DNM—gain
control, cross-orientation suppression, and surround suppres-
sion—differ in their individual temporal properties (see The
suppressive drive for some examples). Studying the temporal
properties of the neurons can allow us to disentangle these
multiple mechanisms and to understand their respective roles
(e.g., Butts et al. 2011; Fournier et al. 2014; Levy et al. 2013).

The suppressive drive. In our formulation of the DNM, both
surround suppression and cross-orientation suppression are
aggregated in a single suppressive drive (Eq. 18) for simplicity.
These two forms of suppression show some analogous prop-
erties, and these properties were captured by the DNM to some
extent. On the other hand, the simulation experiments show
some limitations of our formulation (cf. APPENDIX E). Indeed,
there is converging evidence that the two forms of suppression
arise from different neurophysiological mechanisms (Ange-
lucci and Bullier 2003; Li et al. 2005; Sengpiel et al. 1998). It
has been suggested that cross-orientation suppression consists
of multiple components: monocular components from LGN (Li
et al. 2006; see also Bauman and Bonds 1991) and between
LGN and V1 (DeAngelis et al. 1992; Freeman et al. 2002; Li
et al. 2006; Priebe and Ferster 2006; Smith 2006) as well as
binocular components from LGN (Sengpiel et al. 1995; Walker
et al. 1998) and from intracortical connections within V1
(Endo et al. 2000; Li et al. 2005; Sengpiel and Blakemore
1994; Sengpiel and Vorobyov 2005). Note that the monocular
components play a major role in cross-orientation suppression
(DeAngelis et al. 1992; Li et al. 2005; Sengpiel and Vorobyov
2005). It has also been suggested that surround suppression
consists of multiple components (Angelucci et al. 2002; An-
gelucci and Bressloff 2006; Angelucci and Bullier 2003; Nur-
minen and Angelucci 2014; Webb et al. 2005): from LGN
(Naito et al. 2007; Ozeki et al. 2004), between LGN and V1
(Webb et al. 2005), from intracortical connections within V1
itself (Ozeki et al. 2009), as well as top-down feedback
(Angelucci and Bullier 2003; Bair et al. 2003; Li et al. 2001)
from V2/V3 (Nassi et al. 2013, see also Hupé et al. 2001a) and
from MT (Hupé et al. 2001b). These various components of
cross-orientation and surround suppression have different tem-
poral and spatial properties (e.g., Bair et al. 2003; Knierim and
van Essen 1992). Any version of the DNM that aims to model
the temporal dynamics of neurons’ responses (and not just their
steady-state responses as our version does) will have to take
into account the diverse temporal properties of these various
suppression mechanisms. The following paragraphs provide
some entry points to this rich and growing literature.

Cross-orientation suppression is mostly (though not exclu-
sively) monocular (DeAngelis et al. 1992; Li et al. 2005;
Sengpiel and Vorobyov 2005), while surround suppression is
mostly binocular (DeAngelis et al. 1994). These two types of
suppression also differ in other respects. Consider their laten-
cies. The latency of cross-orientation suppression is substan-
tially shorter than that of surround suppression and even
shorter than that of the response to optimal excitatory stimuli
measured in the same cells (Smith et al. 2006). The latency of
surround suppression depends on its sources. For example, the
corticocortical feedback contribution to surround suppression
in V1 lagged behind the initial responses of the neurons by ~20
ms from V2 and V3 (Nassi et al. 2013, alert macaque) and by
�10 ms from MT (Hupé et al. 2001b, anesthetized macaque).
The latency of surround suppression also depends on the
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distance between the classical RF of the target neuron and the
location of the inducing stimulus—the farther out the surround-
ing inducer, the slower and weaker the suppressive influence
(Bair et al. 2003). These effects are consistent with the basic
fact that the latency and strength of the connection between
two cortical neurons depend on the distance between them
(Bringuier et al. 1999; Grinvald et al. 1994). There is also
evidence that the surround suppression with a short delay (~7
ms) after the initial response is isotropic, whereas that with a
long delay (20 ms) is selective to the orientation of the
surround stimuli (Knierim and van Essen 1992). The LGN is a
plausible source for the faster isotropic suppression, given the
(nearly) orientation invariance of many LGN neurons (see
Bonin et al. 2005; Zaltsman et al. 2015 for reviews). Note that
both types of suppression can be induced by a drifting grating
whose temporal frequency is above 10–15 Hz for most neurons
(Durand et al. 2007). This frequency is too high to elicit
excitatory response in most V1 neurons (Ikeda and Wright
1975; Movshon et al. 1978b; Saul and Humphrey 1992). This
high temporal resolution of the surround suppression can be
explained by feedforward signals from LGN and/or feedback
signals from MT. Neurons in LGN and MT have higher
temporal resolution than those in V1. On the other hand, only
LGN seems to play a major role in the cross-orientation
suppression considering the short latency of the latter.

The responses of some neurons are facilitated in a nonlinear
manner by stimuli outside their classical RFs (Cavanaugh et al.
2002b; Jones et al. 2001; Kapadia et al. 1995; Levitt and Lund
1997; Li and Li 1994; Maffei and Fiorentini 1976; Nelson and
Frost 1985; Polat et al. 1998; Sillito et al. 1995; Vinje and
Gallant 2000; see Fitzpatrick 2000 for a review) as well as by
stimuli within the classical RFs (Bonds 1989; De Valois and
Tootell 1983; Walker et al. 1998). The facilitatory stimuli
differ depending on the individual neurons. The facilitatory
effect can arise from intracortical connections within V1 and/or
feedback from higher cortical areas. Optogenetic stimulation of
neurons in V1 facilitates the responses of other V1 neurons (Li
et al. 2013; Nassi et al. 2015; Sato et al. 2014;). The facilitatory
(as well as the suppressive) effect was not affected by inacti-
vation of V2 (Hupé et al. 2001a), but it was weakened (or
eliminated) by inactivation of V2 and V3 (Nassi et al. 2013).
Also, the surround stimuli themselves can cause an excitatory
signal and evoke firing responses in many neurons without any
stimulation within the classical RFs with a very long latency
(	100 ms; Li et al. 2001; Rossi et al. 2001). The latency of this
excitatory effect from the surround stimuli does not depend on
the distance of the surround stimuli from the RFs (Rossi et al.
2001). This constant latency of the excitatory effect suggests
that this effect cannot be attributed to intracortical connections
because the temporal delay of a signal mediated by these
connections depends on the distance on the retina.

In this article, the spatial pooling weights of the DNM
suppressive drive are specified for simplicity according to a
radially symmetric 2D Gaussian kernel (Eq. 19). The spatial
properties of surround suppression in real V1 neurons, how-
ever, are not so homogeneous. Different regions surrounding
the classical RF of a V1 neuron can cause suppression with
different magnitudes (DeAngelis et al. 1994; Vinje and Gallant
2000) and can have different patterns of suppression with
respect to orientation (Cavanaugh et al. 2002b; Li and Li 1994;
Nurminen and Angelucci 2014; Shushruth et al. 2013). The

suppression and facilitation from the surround region can also
depend on the spatial context within and outside the classical
RF (Jones et al. 2001; Kapadia et al. 1995; Polat et al. 1998).
A judicious combination of surround suppression and surround
facilitation with appropriate temporal and spatial characteris-
tics can account for a neuron’s tuning to more complex visual
features (e.g., Craft et al. 2007; Fitzpatrick 2000; Grossberg
and Mingolla 1985; Li 1998, 2000).

Directions for future work. In this study, we considered only
simple synthetic stimuli within a limited spatial context under
static (or steady state) experimental conditions. We did not
assess the performance of the model under a more ecologically
valid stimulation. Of course, the visual system has evolved to
deal with natural visual stimuli rather than synthetic stimuli
such as gratings. There is ample physiological evidence in
support of this idea. For example, natural stimuli produced
more reliable response patterns across trials compared with
those produced by synthetic gratings. In addition, the spike
trains induced by natural stimuli had more consistent timing
across trials, greater sparseness, and higher signal-to-noise
ratio than those induced by gratings (Baudot et al. 2013; see
also Touryan et al. 2005). Sparse spike trains with high
signal-to-noise ratio are evidence for efficient coding of the
visual stimuli. It has been shown that suppression plays a
critical role for improving the reliability, precision, signal-to-
noise ratio, and sparseness of individual neurons (Haider et al.
2010; Vinje and Gallant 2000; Zhu et al. 2015; see also Butts
et al. 2011 for analogous results in LGN neurons). The sup-
pression also contributes to the sparseness at the population
level (Vinje and Gallant 2000). That is, the number of the
responding neurons decreases and the interneuronal correla-
tions decrease. This tuning to natural visual stimuli allows the
visual system to efficiently encode visual information in our
everyday life (Barlow 2001; Simoncelli and Olshausen 2001).
On the other hand, Rust and Movshon (2005) warned about the
interpretative difficulties inherent in the use of such complex
stimuli. One important direction for future work is to identify
which aspects of natural stimuli are the basis for their prefer-
ential treatment by the visual system compared with synthetic
stimuli. For example, the reliability of the neuronal responses
improves when the spectral power distribution of the natural
stimuli follows the statistics of natural images (Rikhye and Sur
2015). It can be interesting to test whether any synthetic visual
stimulus with the natural spectral power distribution (Field
1987) can improve the reliability of the neuronal responses in
a similar manner. Experiments of this sort can test whether the
natural spectral power distribution is necessary or sufficient for
the improvement in reliability. Such knowledge would help to
improve the DNM specification and especially the composition
of its normalization pool.

Our review is focused on relatively simple (first order)
properties of the stimuli, despite the fact that the responses of
many real neurons can be affected by higher-order visual infor-
mation including figure-ground organization (Hupé et al. 1998;
Lamme et al. 1999; Lee et al. 1998; Rossi et al. 2001; Zhang and
von der Heydt 2010; Zhou et al. 2000), 3D context (Murray et al.
2002, 2006), perceptual filling-in (Fiorani Júnior et al. 1992;
Komatsu 2006), and visual illusions (Ramsden et al. 2001; see
also Jancke et al. 2004 for a brain imaging study). This means that
no model can fully replicate the response of a neuron to natural
stimuli unless such higher-order information is taken into account.
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On the other hand, extracting such higher-order information from
a retinal image is an open research problem. One practical way to
circumvent this problem would be to prepare the higher-order
information in advance and make it available to the model as its
inputs from a top-down process.

The divisive normalization model (DNM) has also been used
to fit physiological results of populations of neurons in V1
(Busse et al. 2009; Goris et al. 2009). Note that modeling
populations is different from modeling single cells, for several
reasons: First, a population may be able to process visual
information better than individual neurons by forming a pop-
ulation code in which different neurons specialize in encoding
different aspects of the input signal (deCharms and Zador
2000; Pouget et al. 2003). For example, the neuronal popula-
tion in V1 can systematically represent the second-order visual
information, while only a subset of the individual cells in V1
respond selectively to second-order stimuli (e.g., An et al.
2014). This complicates the derivation of model predictions
about the population response because a given physiological
phenomenon may have two possible explanations: one in terms
of a population code and another in terms of the properties of
individual neurons. Another difficulty arises from the selective
sampling of neurons in physiological experiments. It has been
pointed out that recordings from some neurons are often
excluded from the data set, producing a selection bias that can
affect the experimental results (Olshausen and Field 2005).
Therefore, the physiological results of the population can
change depending on which neurons are included/excluded in
the population. This can add extra parameters to the model of
the population. On the other hand, selection bias is less critical
for single-cell recording because the model aims to account for
the response properties of individual neurons. These differ-
ences suggest that different approaches may be required to
model populations of neurons as opposed to modeling individ-
ual neurons. One fruitful area for future research is to explore
the degree to which the divisive-normalization equation is
applicable to both cases.

In conclusion, the DNM provides a useful functional char-
acterization of the responses of simple and complex cells in
V1. It deserves to be designated as “the standard” model for many
present purposes (e.g., Carandini and Heeger 2011). We hope that
the standard formulation proposed here, the standard parameter
set, and the accompanying software implementation will facilitate
future research based on this influential and successful model. Of
course, the DNM will be supplanted and/or subsumed by future,
more advanced models, just as it subsumed the “standard” linear
model of the 1980s (Rust and Movshon 2005). It seems particu-
larly desirable to augment the DNM with mechanisms to account
for the temporal dynamics of neuronal responses (e.g., Brosch and
Neumann 2014; Heeger 1993). Accounting for this temporal
dimension, however, poses interesting challenges. It is hard to see,
for example, how a simple functional model can account for the
temporal properties of surround suppression (and facilitation),
which are attributable to several different sources as discussed
above. Such an augmented model would need additional compo-
nents and new adjustable parameters. Ideally, the components and
parameters should have biologically plausible interpretations that
relate to physiological and/or anatomical data. Developing the
DNM along those lines will bring it closer to a structural model.

APPENDIX A: TUNING FUNCTIONS OF A 2D GABOR FILTER

Consider the orientation and spatial-frequency tuning functions of
a 2D Gabor filter (Eqs. 2 and 5) with preferred frequency F (cycles/°,
cpd) and preferred orientation � (°). The orientation tuning function
of this filter is cyclic and becomes maximal at � and � � 180°. The
two peaks have the same shape, and the orientation bandwidth h� (°)
is defined as the width of each peak at its half height. The orientation
tuning function for a grating with spatial frequency F is equivalent to
a circular cross section of the 2D Fourier transform of the filter, taken
along a circle centered in the origin of the Fourier space and having
a radius that corresponds to F. Note that a Fourier spectrum energy
distribution of a 2D Gabor filter is a 2D Gauss distribution (see Figs.
2.10 and 2.11 in Graham 1989). Then, the relation between the
orientation bandwidth h� and the bandwidth hy̆ of the Gabor filter at its
preferred frequency F can be written as follows (see Tables 2.2 and
2.4 in Graham 1989; see also our Fig. 1 for an illustration of hy̆):

hy
„ �

4ln2

�F
�h�

180

�
720ln2

�2Fh�

(A1)

The spatial-frequency tuning function is unimodal and has a max-
imum at the preferred frequency F (cpd; cf. Fig. 2D). Its bandwidth hf

(oct) is defined as the distance between two frequencies Flow and Fhigh

(cpd) at the half height of the function where Flow � Fhigh. Then, the
relation among F, Flow, Fhigh, and hf is

�Flow � Fhigh � 2F

Fhigh ⁄ Flow � 2hf
(A2)

From Eq. A2, the bandwidth Fhigh � Flow in cycles per degree can
be derived as follows:

Fhigh � Flow � 2F
2hf � 1

2hf � 1
(A3)

Recall that the Fourier spectrum energy distribution of a 2D Gabor
filter is a 2D Gauss function. The spatial-frequency tuning function of
the filter for a grating with orientation � is equivalent to a radial cross
section of the Gauss function along a ray from the origin and with
orientation � � 90°. Then, the relation between the frequency band-
width Fhigh � Flow and the bandwidth hx̆ of the Gabor filter at its
preferred orientation � can be written as follows (see Tables 2.2 and
2.4 in Graham 1989; see also our Fig. 1 for an illustration of hx̆):

hx„ �
4ln2

��Fhigh � Flow�
(A4)

From Eqs. A3 and A4, the relation between hx̆ and hf can be written
as follows:

�hf � log2

�Fhx„ � 2ln2

�Fhx„ � 2ln2

hx„ �
�2hf � 1�2ln2

�2hf � 1��F

(A5)

These derivations are the basis of Eqs. 3 and 4 in Linear rectifi-
cation model of simple cells and energy model of complex cells.

APPENDIX B: CONTRAST RESPONSE FUNCTION OF
HYPERBOLIC RATIO MODEL ALONG A LINEAR CONTRAST
AXIS

We analyze the contrast response function (CF) of the hyperbolic
ratio model (Eq. 12) on a linear contrast axis. The CF is a function of
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the luminance contrast c of a grating stimulus. We assume that the
orientation and spatial frequency of the grating are consistent with the
tuning of the model and that the diameter of the grating is sufficiently
large to fill the entire receptive field of the model.

The model’s sensitivity to small local changes in contrast is
maximized at the contrast difference threshold c*, which corre-
sponds to the point of steepest slope of the CF (see Itti et al. 2000;
Wilson 1980; see also CONTRAST RESPONSE FUNCTION). The maximal
CF slope is

�nHB � 1�
nHB�1

nHB �nHB � 1�
nHB�1

nHB

4�HBnHB
(B1)

This maximum occurs for contrast

c* � �HB�nHB � 1

nHB � 1	
1

nHB
(B2)

if nHB � 1 and for c* � 0 otherwise (Fig. 26). If nHB � 1, the CF is
convex downward around c � 0. This trend of the model CF can
account for the shapes of CFs of real neurons around c � 0 (Albrecht
et al. 2003; Albrecht and Hamilton 1982).

APPENDIX C: SHAPE OF CONTRAST RESPONSE FUNCTION
OF DIVISIVE NORMALIZATION MODEL

In this appendix we analyze mathematically the shape of the
contrast response function (CF) of the divisive normalization model
(DNM). Consider the DNM Eq. 15 and a grating g(c) with contrast c,
the model’s preferred orientation and frequency (and phase for a
simple cell), and spatial extent large enough to fill both the entire
receptive and suppressive fields of the model. For this special choice
of stimuli g(c) within the calibration family of Eq. 16, the CF of the
DNM becomes

R�g�c�� � M
<
 � c=nn

�nd � cnd
(C1)

(Note that this equation is equivalent to Eq. 17 in Divisive normal-
ization model.) The first derivative of Eq. C1 with respect to c is

d

dc
R�g�c�� �

�cnd�nn � nd� � 
ndcnd�1 � nn�nd�
M�1��nd � cnd�2�
 � c�1�nn

(C2)

for 0 � c � 1 if 
 � 0 and �
 � c � 1 if 
 � 0. Note that
dR(g(c))/dc � 0 at c � 0 if 
 � 0 and at c ¡ �
 � 0 (the right-hand

limit at �
) if 
 � 0. This means the CF is increasing at low
contrasts.

We differentiate the numerator of Eq. C2 one more time:

d

dc
�cnd�nn � nd� � 
ndcnd�1 � nn�nd�

� cnd�2nd�c�nn � nd� � 
�nd � 1��(C3)

The derivative of the numerator becomes 0 at c � 0 and c � cex,
where

cex � 

nd � 1

nn � nd
(C4)

Hence, the numerator has two local extrema: nn�
nd at c � 0 and

�
nd

�nd � 1�nd�1

�nn � nd�nd�1 � nn�nd (C5)

at c � cex. Besides, the denominator of Eq. C2 is always positive
between < � 
= and 1, exclusive.

In light of these analytic results, the possible shapes of the contrast
response functions of the DNM in the range from < � 
= to 1 can be
categorized into the following three types:

1) The CF is unimodal and convex-upward if dR(g(c))/dc � 0 at
c � 1. This condition is satisfied when 
 is sufficiently large:


 �
nn

nd
�1 � �nd� � 1 (C6)

The CF is decreasing at high contrasts and must have a local
maximum between < � 
= and 1, exclusive. In other words, in this
regime the model produces the supersaturation effect. This inequality,
which is reproduced as Eq. 23 in CONTRAST RESPONSE FUNCTION, is a
sufficient condition for the supersaturation effect for g(c).

2) The CF has both a local maximum and a local minimum if
dR(g(c))/dc � 0 at c � 1, dR(g(c))/dc � 0 at c � cex (see Eq. C5), and
< � 
= � cex � 1. The local maximum lies between < � 
= and cex,
and the local minimum lies between cex and 1. Note that in practice,
the CF may not be conditioned sufficiently well to check these
conditions on the basis of physiological data. Many physiological
studies have shown that the DNM can fit data well under an assump-
tion that nn � nd. Then, nn � nd can be too small compared with nd �
1 to have stable estimates of cex and dR(g(c))/dc at c � cex (Eq. C5).

3) The CF is monotonically increasing otherwise.

APPENDIX D: CONTRAST RESPONSE FUNCTION FOR
NONPREFERRED STIMULI

We expand the analysis of APPENDIX C to stimuli g̃(c) that do not
necessarily match the tuning parameters of the DNM neuron. Specif-
ically, we consider here the DNM response (Eq. 15) as a function of
the contrast c of a circular grating patch with nonpreferred orientation
and/or nonpreferred spatial frequency and/or diameter that is not large
enough to cover the entire receptive and suppressive fields of the
model.

Let g̃(c) be any circular grating patch. Our analysis is based on the
simple observation that g̃(c) � cg̃(1). As discussed in Linear rectifi-
cation model of simple cells and energy model of complex cells (cf.
Eq. 9), the stimulus drive Eq. 5 is a linear operator for simple cells.
The corresponding Eq. 7 for complex cells is nonlinear, but it too
scales in direct proportionality for any contrast c 	 0. This propor-
tionality holds even when the orientation, spatial frequency, and/or
diameter of g̃(c) differ from their optimal values. Note also that the
suppressive drive �i�� wiEPi

�I�nd in Eq. 18 is a linear combination of
stimulus drive terms EPi

�I� raised to power nd. In light of these
considerations and of Eq. 17 in the main text (see also Eq. C1 above),
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Fig. 26. Contrast response functions (CFs) produced by the hyperbolic ratio
model (Eq. 12) on a linear contrast axis. Positions of maximal slopes of the
CFs are indicated by arrowheads. A: CFs with 3 different values of the
exponent parameter nHB. B: CFs with 3 different values of the semisaturation
contrast parameter �HB. A stimulus with contrast �HB elicits one-half of the
saturation level MHB. (�HB � 0.1 for A; nHB � 2 for B.)
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the DNM contrast response function for an arbitrary grating g̃(c)
becomes

R�g̃�c�� � M
<
 � pg̃c=nn

�nd � �qg̃c�nd
(D1)

where pg̃ and qg̃ depend on the grating g̃ but not on the contrast c.
Equation D1 can be modified as follows:

R�g̃�c�� � M

<
 �
pg̃

qg̃
10�log10 c�log10 qg̃�=nn

�nd � 10nd�log10 c�log10 qg̃� (D2)

Equation D2 shows that a relation between plots of R(g̃(c)) and
R(g(c)) (Eq. C1) can be represented by the following transformations
assuming |
|��pg̃c: translation for �log10qg̃ along the log-contrast
axis and scaling by a factor of �pg̃ ⁄ qg̃�nn along the response axis. Note
that the assumption |
|��pg̃c is hardly satisfied if the contrast c is low.

APPENDIX E: DECOUPLING POOLING KERNEL OF
SUPPRESSIVE DRIVE FROM PREFERRED FREQUENCY OF
STIMULUS DRIVE

In this appendix we consider the addition of a new free parameter
to Eq. 20 to relax the restriction that the frequency pooling weights of
the suppressive drive must be centered on the preferred frequency of
the stimulus drive of the DNM neuron. This augmentation is needed
to account for certain aspects of cross-orientation suppression intro-
duced in CROSS-ORIENTATION SUPPRESSION. As we discuss there, very
strong suppression effects have been observed for many V1 neurons
(DeAngelis et al. 1992; Koch et al. 2016; see Fig. 16D), whereas the
DNM with the standard parameters can produce only relatively
modest suppression under the standard parameterization (Fig. 16A).

Let us consider in detail the orientation tuning function of the
cross-orientation suppression effect observed for the real V1 neuron in
Fig. 16D (replotted from Fig. 7, C and D, of DeAngelis et al. 1992).
This neuron was probed with stimuli composed of a signal grating I*

and a mask grating I�. The frequency (1.25 cyc/°) and orientation
(190°) of I* were approximately the same as the neuron’s excitatory
preferences. The frequency of I� was about one-half of the preferred
frequency (0.6 cyc/°), and I� elicited no response from the neuron
when presented alone. Consider the condition in whichI� had the
same orientation as I* (and hence both were equal to the neuron’s
preferred orientation). The data in Fig. 16D show that the neuron
responded at a rate of �20 spikes/s (sps) to the signal I* alone, but �1
sps to the composite stimulus I* � I�. This relation can be written
using the DNM as follows:

�1 � R�I* � I�� � M
<
 � knEP*�I* � I��=nn

�nd � kdE��I* � I��

20 � R�I*� � M
<
 � knEP*�I*�=nn

�nd � kdE��I*�

, (E1)

where E�(I) denotes the suppressive drive (�i�� wiEPi
�I�nd). Recall

that the mask grating elicited a negligible response from the neuron
when presented alone. Hence, we can assume EP*�I* � I�� � EP*

�I*�. Then

E��I* � I�� � 20E��I*� � 19�nd ⁄ kd (E2)

where �nd⁄kd is a positive constant. In other words, the output of the
suppressive drive to I* � I� is at least 20 times larger than its output
to I*. To quantify the strength of the suppression effect, we use the
suppression index SI � 1 � R(I* � I�)/R(I*) defined by Koch et al.
(2016). The neuron in Fig. 16D has SI 
 0.95.

The near-complete cross-orientation suppression in Fig. 16D can be
emulated by the DNM, provided that the mask has greater contrast
than the signal. Our simulations used contrasts 15% and 25% for I*

and I�, respectively.21 The emulation requires significant modifica-
tions to the parameter set: nn � nd � 10, h� � 55, M � 11. Note in
particular that the two exponents are much larger than their standard
setting (nn � nd � 2). This modification magnifies the contrast differ-
ence between I* and I� and makes E�(I* � I�) substantially stronger
than E�(I*). These large exponents also make the contrast response
function (CF) of the model neuron very steep, which renders this
approach implausible because such steep CFs are hardly observed for
real V1 neurons (Albrecht and Hamilton 1982; Busse et al. 2009).

Another approach for accounting for the observed near-complete
suppression effects is to modify one of the DNM equations. We interpret
such strong suppression effects as evidence that the suppressive drive
pooling weights (Eq. 20) are much larger for the channels stimulated by
the mask I� than for the channels stimulated by the signal I*. Such
pooling weights would produce very strong suppression E��I* �
I����E��I*� in a straightforward manner. Recall that in the standard
DNM formulation (Eq. 20), the pooling weights of the suppressive drive
are defined so that the most suppressive frequency coincides with the
preferred frequency F* of the stimulus drive. The analogous restriction
for orientation pooling (Eq. 21) works well and agrees with the
physiological data (see CROSS-ORIENTATION SUPPRESSION and SURROUND

SUPPRESSION). However, the present formulation apparently is too
restrictive with respect to the frequency pooling weights, because
there are real V1 neurons whose most suppressive frequencies for
cross-orientation (DeAngelis et al. 1992) or surround suppression
(DeAngelis et al. 1994; Li and Li 1994) differ significantly from their
preferred signal frequencies. The complex cell in Fig. 16D happens to
be one such case. Its most suppressive frequency F is roughly 1 oct
below its preferred frequency F* (Fig. 16J). The gratings I� and I*
were chosen with these frequencies because the experimental proce-
dure of DeAngelis et al. (1992) searched for masks that maximized the
suppressive effect. The most natural way for decoupling F from F*
in the DNM is to introduce a new free parameter �F into Eq. 20. The
augmented specification of the spatial-frequency pooling weights wFi
becomes

wFi
 exp��4ln2

�log2Fi � log2F* � �F�2

hF2

 (E3)

where �F parameterizes the difference between the center of the
frequency pooling kernel of the suppressive drive and the preferred
frequency of the stimulus drive. Recall that the outputs of the two
drives are normalized by calibration constants kn and kd determined
with the help of calibration images (Eq. 16). Only one such image
suffices for the standard DNM formulation, but the augmented version
requires separate calibration images for the stimulus and suppressive
drives when �F � 0. Specifically, the calibration image for the
suppressive drive has to be a grating with frequency F*⁄2�F cpd. This
augmented equation allows the DNM to account for the cross-
orientation suppression data (Fig. 16, H and I) that were problematic
for the standard formulation.

The modified Eq. E3 complicates the interpretation of the param-
eter F* of the stimulus drive. It no longer coincides with the preferred
excitatory frequency of the model neuron as a whole. For example, the
most excitatory frequency of the model neuron in Fig. 16I is measured
to be 2.46 cpd (1.30 oct), even though the preferred frequency of the
stimulus drive is F* � 2.0 cpd (1.0 oct). One way to demonstrate this
inconsistency is to measure the frequency tuning function of the DNM
directly with gratings and compare it to the Fourier transform of the

21 These values are taken from the legend of Fig. 3D in DeAngelis et al.
(1992), which described the stimuli used to estimate the frequency tuning for
the same complex cell. The contrasts that were used to measure the orientation
tuning functions could not be found in the published report.
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receptive field of the DNM measured with local stimulus probes (cf.
Fig. 23 and Fig. 25B). The peaks of the measured and derived tuning
functions occur at different frequencies (Fig. 27A). Such divergent
frequency preferences have been observed experimentally in real V1
neurons (DeAngelis et al. 1993b; Smyth et al. 2003). Note also that
the difference between the two preferred frequencies of the DNM
neuron depends on the contrast of the grating (Fig. 27B).

Finally, note also that the revised Eq. E3 still satisfies the assump-
tion that the pooling weights in Eq. 18 can be factored into indepen-
dent kernels with respect to space, frequency, and orientation. This
assumption simplifies the model specification and reduces the number
of free parameters but may prove too restrictive for some purposes.
Concretely, the discrepancy between the orientation tuning band-
widths of the surround suppression effect (Fig. 19B) and of the
cross-orientation suppression effect (Fig. 16D) suggests inseparability
in space and orientation. This is a topic for future research.

APPENDIX F: COMPUTATIONAL IMPLEMENTATION OF
DIVISIVE NORMALIZATION MODEL

The computational implementation of the divisive normalization
model (DNM, Eq. 15) allows the model to be applied to any visual
stimulus used in physiological or psychophysical studies. Its compu-
tational efficiency and practical usage have also been taken into
consideration.

The suppressive drive of the DN model (Eq. 18) is computationally
demanding. It is represented as a weighted sum of EC:XiYiFi�i

�I�nd (Eq.
7) in the orientation, spatial frequency, and 2D retinal space domains,

where EC:XiYiFi�i
�I� is a square root of a sum of ES:XiYiFi�i,0°�I�2 and

ES:XiYiFi�i,90°�I�2 (Eq. 5). A part of the weighted sum of the suppressive
drive in the 2D retinal space domain can be computed with 2D
cross-correlation of a retinal image I(x, y) (Eq. 1) with two 2D Gabor
filters GXiYiFi�i,�i

in Eq. 2:

�
XiYi

wXiYi
EC:XiYiFi�i

�I�nd � �� wXiYi��I�x, y� � GXiYiFi�i0
°�x, y��2

� �I�x, y� � GXiYiFi�i90°�x, y��2�
nd

2 dxdy (F1)

where an operator � represents cross-correlation. This is equivalent to
computing EC:XiYiFi�i

at every pixel of the input image. Then, the
number of the 2D spatial grid NX  NY becomes equivalent to that of
pixels in the filtered image.

The computational cost for one cross-correlation operation is of
order O(NXNY log (NXNY)), and N�  NF such operations are needed
to compute the suppressive drive for one input image. Thus the total
cost is O(NIN�NFNXNYlog(NXNY)), where NI denotes the number of
images. This computation can be optimized with convolution theory,
namely, the filter kernels in Eq. 2 are applied to the input image in a
2D Fourier space:

I�x, y� � GXiYiFi�i�i
�x, y� � F �1�F�I�x, y��*F�GXiYiFi�i�i

�x, y���
(F2)

where operators F and F�1 denote the Fourier transform and its
inverse and * denotes conjugation. The Fourier transforms of the
filter kernels GXYF�� can be computed in advance and used for
processing every input image. This brings the total cost down to
O(NINXNYlog(NXNY)), which still is the most expensive computa-
tion in the model.

Note that Eqs. F1 and F2 are only approximate in practice because
the sizes of I and GXYF�� are both finite. The approximation improves
if I and GXYF�� are surrounded by sufficiently large regions of
uniform gray. The size of I with the surrounding region should be the
same as that of GXYF�� and be 2mx�2my where mx and my are positive
integers. It allows the model to process the image efficiently with the
fast Fourier transform algorithm in Eq. F2.

The processing is further optimized so that the model can compute
the suppressive drives of multiple model neurons to a common input
image at once. The results of the image filtering process in Eq. F2 can
be shared among all model neurons. It generates a set of N�  NF 
NX  NY different channels. The suppressive drives of multiple
neurons can be computed from the same set of the channels with
different neuron-specific pooling weights w�i

, wFi
, and wXiYi

in Eq. 18.
In the process of computing the suppressive drives, the software

calculates N�  NF  NX  NY  2 different ES:XYF�� and N� 
NF  NX  NY different EC:XYF�. They can be also used as the
stimulus drives of multiple neurons. Note that in practice we only
need a much smaller number NC, instead of NX  NY, of the 2D spatial
positions of the model neurons, especially when the resolution of the
input image is high. Also, not all NF spatial frequencies are appro-
priate for the stimulus drives because of the edge effect. Theoretically,
the domain of spatial frequencies is unbounded, but in practice
ES:XYF�� and EC:XYF� can only be sampled within a limited range.
Consider the model neurons whose preferred frequencies are on the
upper (or lower) bound of the sampling range. They cannot be
suppressed by channels outside of the sampled range because these
channels are truncated in the implementation. The edge effect can
be alleviated by removing some neurons whose tuned frequencies
are close to the bounds of the sampling range. Hence, there are N�

 (NF � �F)  NC  3 model neurons generated in total: N� 
(NF � �F)  NC complex cells and N�  (NF � �F)  NC  2
simple cells (see Eq. 7), where �F is the number of channels
removed for the edge effect.
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Fig. 27. Two alternative procedures for estimating the spatial-frequency tuning
function yield diverging results for the augmented divisive normalization
model (DNM) neuron (in which the standard Eq. 20 is replaced with Eq. E3).
The first procedure (black lines) measures the frequency tuning directly with
gratings. The second procedure (gray lines) derives the frequency tuning
indirectly via the Fourier transform of the neuron’s receptive field probed with
light and dark bars (see phenomenon 30 in Table 1, RECEPTIVE FIELDS OF SIMPLE

CELLS, and Fig. 25B). A: spatial-frequency tuning functions obtained via the
direct (Measured) and indirect (Derived) procedures. Contrasts of the grating
and the bars were 100%. B: effect of the contrasts of the grating and the bars
on the peak frequencies of the derived and measured frequency tuning
functions.
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