
Judging whether two things are the same or different is 
a fundamental cognitive operation. Such judgments are 
a staple of daily life and a building block for higher-level 
processes. The same–different task is an important tool in 
the psychological laboratory, where it is used with animals, 
infants (habituation), and patients. It is also widely used in 
perceptual discrimination studies with adult observers, par-
ticularly when the relevant stimulus features are difficult to 
describe (e.g., wine tasting). Thus, understanding the mecha-
nisms of same–different judgments is an important research 
goal for both theoretical and methodological reasons.

Signal detection theory (SDT; Green & Swets, 1966; 
Macmillan & Creelman, 2005) is a prominent and fruit-
ful framework for perceptual discrimination. Its appeal 
is that, given certain assumptions, SDT can separate the 
perceptual and nonperceptual determinants of the ob-
served performance. The basic experimental design for 
discrimination involves only two stimuli, referred to as 
A and B here. Because of perceptual noise, repeated pre-
sentations of each stimulus give rise to a whole distribu-
tion of internal magnitudes. Because the two stimuli are 
similar, their respective distributions overlap and have 
the same standard deviation σ. The normalized distance, 
d ′ 5

 
(µB 2 µA)/σ, between the means of the two magni-

tude distributions is a measure of the perceptual discrim-
inability of the two stimuli. It can be estimated from the 
observed proportions of hits (correct classifications of B 
as “B”) and false alarms (incorrect classifications of A 
as “B”). Importantly, d ′ is a sensitivity statistic that char-
acterizes the stimulus pair but not the response bias. The 
latter is a nonperceptual factor under strategic control that 
affects the observed proportions but is calculated out of 
the d ′ estimate (Green & Swets, 1966).

The SDT framework has been extended to the same–
different task (e.g., Macmillan & Creelman, 2005; Noreen, 
1981; Sorkin, 1962). This task is more complex, because 
each trial involves two stimulus presentations, usually in 
succession. The decision space is thus two-dimensional, 
with x- and y-axes representing the magnitudes of the 
first and second stimuli, respectively. The fixed same–
different design involves four stimulus pairs: AA, AB, 
BA, and BB. In a noise-free system, they would be repre-
sented by four points arranged in a square configuration 
(cf. Figures 1A–1I). The system is noisy, however, and 
repeated presentations give rise to four bivariate distribu-
tions. Those centered on 〈µA, µA〉 and 〈µB, µB〉 are labeled 
“same,” whereas those centered on 〈µA, µB〉 and 〈µB, µA〉 
are labeled “different.” This is equivalent to a difficult 
classification problem known as the XOR (exclusive OR) 
problem. The same and different regions cannot be sepa-
rated by a linear boundary (Ashby & Townsend, 1986; 
Minsky & Papert, 1969; Rumelhart, Hinton, & Williams, 
1986). A complex decision rule is necessary—one that 
involves nonlinear processing and/or multiple criteria.

In this article, we examine eight decision rules (or strat-
egies) for the same–different task. They belong to three 
families: differencing, covert classification, and likeli-
hood ratio. Observers who follow a differencing strategy 
respond on the basis of an explicit representation of the dif-
ference between the two stimuli presented on a trial (Sor-
kin, 1962). Observers who follow a covert-classification 
strategy label each component stimulus as either “A” or 
“B” (or, possibly, “don’t know”) and then combine the 
two labels (Pollack & Pisoni, 1971). Finally, the statisti-
cally optimal strategy compares the likelihood that the two 
magnitudes are drawn from a different distribution with 
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yields four pieces of information rather than just two. We 
can estimate four probabilities, because there are four dis-
tinct stimulus pairs:

	 pAA 5 P(“different” | AA)

	 pAB 5 P(“different” | AB)

	 pBA 5 P(“different” | BA)

	 pBB 5 P(“different” | BB).	 (2)

The traditional analysis assumes that pAB 5 pBA and 
pAA 5 pBB. We will demonstrate that these identities can 
fail empirically and that their violations are very infor-
mative theoretically. Different strategies predict differ-
ent patterns of equalities and inequalities among the four 
probabilities in Equation 2. All strategies whose predic-
tions are violated in a given data set can be ruled out from 
further consideration (Platt, 1964; Popper, 1963). In par-
ticular, we will prove that all differencing strategies can be 
ruled out when pAA  pBB, and most covert-classification 
strategies can be ruled out when pAB  pBA. The proof is 
based on symmetry considerations and allows parameter-
free inferences from qualitative patterns in the data. No 
goodness-of-fit comparisons are required.

The next section introduces eight decision rules that 
cover the space of plausible theoretical alternatives. Their 
symmetries and the observable consequences thereof 
are presented next. This leads to a systematic methodol-
ogy for analyzing same–different data. It identifies four 
qualitative patterns of (in)equalities among the observed 
proportions and lists the strategies compatible with each. 
The methodology is illustrated on data from a perceptual-
learning experiment. Mathematical proofs and d ′ formu-
las for covert classification are given in the Appendices.

Eight Decision Rules
Representational assumptions. We adopt the stan-

dard representational assumptions for the same–different 
task (Dai et al., 1996; Green & Swets, 1966; Laming, 
1986; Macmillan & Creelman, 2005; Noreen, 1981): 
(1) The perceptual effect (or magnitude) of the relevant 
stimulus feature is a unidimensional Gaussian random 
variable; (2) the two stimuli being discriminated are very 
similar and thus give rise to magnitude distributions with 
equal variance; (3) the two successive presentations in a 
trial are statistically independent; (4) a stimulus has the 
same perceptual effect, regardless of whether it is pre-
sented first or second; and (5) the memorial variability is 
negligible relative to perceptual variability.

The decision space is two dimensional, with horizon-
tal and vertical axes corresponding to the first and second 
presentation interval, respectively. The four stimulus pairs 
give rise to four bivariate Gaussian distributions with cen-
ters located on the corners of a square, as is illustrated in 
Figure 1A. Under these assumptions, the covariance matri-
ces of all four distributions have the same σ2 along the di-
agonal and 0 elsewhere. Without loss of generality, we can 
choose a coordinate system with origin at the center of the 
square and with unit equal to σ 5 1. The mean perceptual 
effects of stimuli A and B are thus µA 5 2d ′/2 and µB 5 
1d ′/2. Our goal is to estimate d ′—the size of the square. 

the likelihood that they are drawn from a same distribution 
(Dai, Versfeld, & Green, 1996; Noreen, 1981). It is doubt-
ful that human observers have the requisite knowledge 
and processing power to implement the likelihood-ratio 
strategy in the general case, but it is an important theoreti-
cal benchmark for the other strategies.

The researcher needs to know what strategy is adopted 
in a given experiment. First of all, without such knowledge 
one cannot estimate d ′. The current practice is to gather 
the proportions of hits and false alarms according to Equa-
tion 1 and then calculate d ′ according to various strategy-
specific formulas (Macmillan & Creelman, 2005). The 
problem is that different decision rules imply different d ′ 

 

for the same data; the discrepancy can be almost twofold 
in extreme cases (Macmillan & Creelman, 2005). Second, 
the response bias is underdetermined too. All indices of 
same–different bias proposed in the literature are strategy 
specific (Hautus & Collins, 2003; Irwin, Hautus, & Fran-
cis, 2001). Third, the decision rule can be of considerable 
interest in itself. For example, Petrov (2009) investigated 
whether perceptual learning involves gradual transitions 
from suboptimal to nearly optimal strategies.

	 H 5 P (“different” | AB or BA)

	 F 5 P (“different” | AA or BB).	 (1)

There is a pervasive tendency in the methodological 
literature to analyze the same–different data exclusively 
in terms of hits and false alarms (e.g., Dai et al., 1996; 
Irwin, Hautus, & Butcher, 1999; Macmillan & Creelman, 
2005; Noreen, 1981). This anchors the same–different 
analysis in the better understood yes–no analysis (Green 
& Swets, 1966). However, this approach ignores valuable 
information available in the same–different data. Because 
Equation 1 reduces everything to two numbers (H and F ) 
and the SDT model has two parameters (d ′ and bias), no 
degrees of freedom are left to provide constraints to infer 
the strategy. Additional information is needed and can be 
sought in various ways. One method is to obtain same–
different and yes–no responses with the same materials 
and compare the resulting d ′ values (see Macmillan & 
Creelman, 2005, p. 228, for a review). Another method 
looks for strategy-specific features in the shapes of the 
isosensitivity and/or isobias curves (Francis & Irwin, 
1995; Hautus & Collins, 2003; Irwin & Francis, 1995). 
A third method adds a random and independent perturba-
tion to each stimulus and examines the resulting pattern 
of correlations (Berg, 1989; Dai et al., 1996; Wang, Irwin, 
& Hautus, 2005). Ashby and Gott’s (1988) randomization 
technique adds large amounts of known external noise to 
the stimuli so that the unknown internal noise becomes 
relatively insignificant. The decision boundary can then 
be mapped out directly (Wang et al., 2005). These meth-
ods are valuable tools for studying the decision-making 
aspects of the task. Their complicated experimental de-
signs, however, limit their applicability when the percep-
tual aspects are of main interest.

In this article, we develop a methodology that does not 
require special experimental designs. The main idea is to 
take full advantage of the fact that the same–different task 
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of two perpendicular straight lines, each equidistant from 
the centers of the respective magnitude distributions. These 
lines coincide with the axes in our chosen coordinate sys-
tem. The two shaded quadrants are labeled “different”; the 
two white quadrants are labeled “same.” Table 1 lists eight 

This is a sensitivity measure that characterizes only the 
stimulus pair, not the decision rule or the response bias.

To produce a same or different response, the observer must 
partition the decision space. Figure 1A shows the strategy of 
an ideal, unbiased observer. The decision boundary consists 
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Figure 1. Schematic representation of the decision space. White areas are labeled “same” and shaded areas “different.” The percep-
tual effects of the first and second stimuli vary along the x- and y-axes, respectively. The four circles in each panel are contours of equal 
probability density for the joint effects of stimulus pairs AA, AB, BA, and BB. Panel A illustrates how an unbiased optimal observer 
partitions the space. Panels B–I illustrate the eight decision rules listed in Table 1 and discussed in the text. The diagonal(s) show the 
axis (or axes) of symmetry for each decision boundary. c, c1, and c2 denote covert-classification criteria.
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ing roving 2AFC tactile flutter discrimination: The firing 
rates of many neurons in secondary somatosensory cortex 
correlate with the stimulus difference (Romo, Hernández, 
Zainos, Lemus, & Brody, 2002).

On the other hand, the differencing strategy is subopti-
mal for fixed same–different designs, which are our main 
focus here (Irwin et al., 1999; Noreen, 1981). For exam-
ple, suppose d ′ 5 3 and the criterion is chosen so that the 
false alarm rate is 1%. Then the hit rate is approximately 
50% under the optimal strategy (LR1) but only 32% under 
DF1. Conversely, a 50% hit rate implies d ′ 5 3.65 under 
DF1 and d ′ 5 3 under LR1.

To carry out a differencing strategy, the observer must 
maintain the first magnitude in working memory and then 
calculate the difference to the second magnitude. This can 
be effortful and error prone. To relieve the cognitive load, the 
observer may opt for a covert-classification strategy instead.

Covert-classification strategies. The defining feature 
of all covert-classification strategies is that they classify 
the stimuli individually. Neither memorization nor sub-
traction of continuous magnitudes is necessary.

The most straightforward covert-classification strategy 
was proposed by Pollack and Pisoni (1971). We refer to 
it as CC1 (covert classification with one criterion). The 
first stimulus is classified as either “A” or “B.” Then the 
second stimulus is classified independently and with the 
same criterion. The observer responds “same” iff the two 
labels match. Figure 1D plots the resulting partitioning 
of the decision space. When the criterion is unbiased, the 
overt responses are unbiased and optimal (Figure 1A; 
Noreen, 1981). When the criterion is biased, the overt re-
sponses are biased in favor of “same.” This prediction is 
in qualitative agreement with much same–different data 
(Macmillan & Creelman, 2005). Quantitatively, however, 
CC1 requires unrealistically high covert biases to account 
for the observed probabilities of responding “same.”

A preference for same responses seems natural with 
hard-to-discriminate stimuli. On many trials, the stimuli 
are perceived as similar because neither of them can be 
(covertly) classified with confidence. This idea can be 
formalized by a decision rule with two criteria. The first 
stimulus is labeled “A” if its magnitude is below c1, “B” 
if the magnitude is above c2, and “ambiguous” otherwise. 
Then the second stimulus is classified independently and 
with the same criteria. The observer responds “different” 
iff the labels are unambiguous and different. All ambigu-
ous stimuli produce a same response. When the two cri-
teria satisfy the constraint c1 1 c2 5 0, we have a covert-
classification strategy with two symmetric criteria (CC2s; 
Figure 1E). Without this constraint, we have a CC strategy 
with two arbitrary criteria (CC2a; Figure 1F).

Reversed-classification strategies—the final members 
of this family—formalize the following intuition. Suppose 
that the first magnitude exceeds some high criterion and 
is confidently labeled as “B.” To respond “different,” the 
observer demands that the second magnitude be classified 
with comparable confidence in the opposite category, de-
marcated by an equally stringent criterion of the opposite 
sign. Thus, if the first stimulus is classified as “B” when 
x1 . c2, the second stimulus is classified as “A” when 

decision rules organized in three families: differencing, co-
vert classification, and likelihood ratio. Figures 1A–1I il-
lustrate how each family partitions the decision space.

Differencing strategies. The defining feature of all 
differencing strategies is that they form an explicit repre-
sentation of the difference, δ 5 (x2 2 x1), of the stimulus 
magnitudes and that all subsequent processing is based 
on this difference. Magnitude pairs that differ by the same 
amount are treated as equivalent. This collapses the two-
dimensional space 〈x1, x2〉 to a single dimension δ. Geo-
metrically, the differencing operation projects the plane 
onto the negative diagonal.

The simplest differencing strategy was proposed by 
Sorkin (1962). We refer to it as DF1 (differencing strat-
egy with one criterion). It compares the absolute value of 
the difference with a criterion c. The observer responds 
“same” iff |δ| , c. Equivalently, DF1 can be formulated 
with a pair of criteria equidistant from the neutral point. 
The observer responds “same” iff 2c , δ , c. Projected 
back to the two-dimensional space, the criteria become 
lines parallel to and equidistant from the positive diagonal 
(Figure 1B). The band that contains the origin is labeled 
“same”; the regions on either side are labeled “different.”

Exchanging the stimuli in the two presentation intervals 
reverses the sign of δ. Under DF1, however, this sign does 
not affect the final response. Thus, DF1 predicts identical 
response probabilities for stimulus pairs that differ only 
in the order of presentation. In particular, DF1 predicts 
pAB 5 pBA for heterogeneous pairs. Our experimental data 
violate this identity and thus rule out DF1. The data are 
consistent with a more general strategy that we refer to as 
DF2 (differencing strategy with two criteria). It involves 
two arbitrary criteria that may not be equidistant from the 
neutral point. The observer responds “same” iff 2c1 , 
δ , c2. Figure 1C plots an example in which pAB . pBA.

DF1 is a special case of DF2 in which the two criteria 
satisfy the constraint c1 1 c2 5 0.

Differencing strategies have several things to recom-
mend them. DF1 maximizes accuracy in two-alternative 
forced choice (2AFC) designs, where the two stimuli are 
always different and the task is to indicate which one came 
first (Macmillan & Creelman, 2005). DF1 is also optimal 
in roving same–different designs, where absolute inten-
sities vary but differences are kept constant (Dai et al., 
1996). A plausible neural representation of δ has been 
found in physiological recordings with monkeys perform-

Table 1 
Abbreviated Labels of the Decision Strategies  

Discussed in the Text

Label  Decision Strategy

DF1 Differencing strategy with one criterion
DF2 Differencing strategy with two criteria
CC1 Covert classification (CC) with one criterion
CC2a CC with two asymmetric criteria and bias for same responses
CC2s CC with two symmetric criteria and bias for same responses
RC2a Reversed-classification with two asymmetric criteria
RC2s Equivalent to CC2s
LR1 Likelihood-ratio strategy with one criterion
LR2  Likelihood-ratio strategy with two criteria
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Definition. A curve is symmetric with respect to an axis 
when the mirror image of each point on the curve also lies 
on the curve.

Our main leverage comes from the fact that the decision 
boundaries of different strategies are symmetric with respect 
to different axes; the positive diagonal (through 〈µA, µA〉 
and 〈µB, µB〉), the negative diagonal (through 〈µA, µB〉 and 
〈µB, µA〉), or both. Figures 1A–1I are a visual guide to these 
symmetries. Each panel plots the axes of symmetry of the 
corresponding strategy. Given that the perceptual distribu-
tions are symmetric too, each decision rule gives rise to 
a characteristic pattern of equalities among the response 
probabilities. These patterns are summarized in Theorem 1, 
which is the main theoretical result in this article.

Theorem  1. Under the representational assumptions 
listed in the previous section, the decision rules in Table 1 
make the following parameter-free predictions about the 
response probabilities defined in Equation 2:

•	 DF1 implies pAA 5 pBB and pAB 5 pBA

•	 DF2 implies pAA 5 pBB

•	 CC1 implies pAB  5 pBA and ( pAB  2 .5)2  5  
( pAA 2 .5)( pBB 2 .5)

•	 CC2s implies pAB  5 pBA and pAA  5 pBB and  
pAB $ pAA

•	 CC2a implies pAB 5 pBA and p2
AB $ pAA pBB

•	 RC2a implies pAA 5 pBB and pABpBA $ p2
AA 

•	 LR1 implies pAA 5 pBB and pAB 5 pBA

•	 LR2 implies pAA 5 pBB when there is an overall 
bias for “same” responses and pAB 5 pBA when 
there is an overall bias for “different” responses.

The proof is straightforward and is given in Appen-
dix A. In a nutshell, symmetric decision boundaries de-
marcate symmetric response regions, the perceptual dis-
tributions have (mutually) symmetric probability density 
functions, and the integrals of symmetric densities over 
symmetric regions are equal.

Theorem 1 reveals the implicit regularities of each fam-
ily. The differencing family is characterized by pAA 5 pBB. 
Any observer who follows any differencing strategy must 
show this pattern, regardless of their sensitivity or criteria. 
The reason is built into the decision rule itself: The dif-
ference, δ 5 (x2 2 x1), always has the same (zero) mean 
when x1 and x2 are drawn from distributions with identical 
means. Thus, the distinction between AA and BB is lost, 
because each of these pairs projects to the same δ.

The covert-classification family, with the exception of 
RC2a, is characterized by pAB 5 pBA. Again, the reason is 
built into the decision rule itself: The XOR rule that com-
bines the covert-classification labels is order invariant. 
Specifically, the overt response for an “A” followed by a 
“B” matches that for a “B” followed by an “A.” Therefore, 
any strategy that applies the same covert-classification 
criteria on both presentation intervals predicts identical 
performance for the two heterogeneous stimulus pairs. 
(Homogeneous pairs break the XOR symmetry because 
of their nonoverlapping cross-classification possibilities.) 

x2 , 2c2. If the first stimulus is classified as “A” when x1 ,  
c1, the second stimulus is classified as “B” when x2 . 2c1. 
With symmetric criteria (c1 5 2c2), the resulting rule 
coincides with the CC2s rule. With asymmetric criteria, 
however, RC2a and CC2a partition the decision space dif-
ferently and predict different patterns among the observed 
probabilities (Figures 1I and 1F).

Likelihood-ratio strategies. The third family of de-
cision rules involves likelihood ratios. They guarantee 
statistically optimal performance but require substantial 
computational power and detailed knowledge of the pa-
rameters of the perceptual distributions. This is not psy-
chologically realistic, especially in the beginning of the 
experimental session. Thus, likelihood-ratio rules are in-
teresting mainly as ideal-observer benchmarks.

Let Ld/s denote the likelihood ratio of different over same 
responses—that is, the likelihood that 〈x1, x2〉 is drawn 
from AB or BA divided by the likelihood that it is drawn 
from AA or BB. Under uniform presentation frequencies 
and standard representational assumptions, this ratio is 
given in Equation 3 (Dai et al., 1996; Noreen, 1981). Ld/s 
defines a saddle-shaped surface that opens up along the 
positive diagonal and down along the negative diagonal. 
The likelihood-ratio strategy with one criterion (LR1) is 
to respond “different” iff Ld/s . c. The decision boundary 
consists of two disjoint nonlinear curves. When c . 1, there 
is an overall bias for same responses, and the boundary in-
tersects the negative diagonal as is illustrated in Figure 1G. 
When c , 1, there is an overall bias for different responses, 
and the boundary intersects the positive diagonal. When 
c 5 1, there is no overall bias, and the boundary consists of 
two perpendicular straight lines (Figure 1A).
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Data sets in which pAB  pBA are inconsistent with 
the LR1 strategy. The likelihood-ratio strategy with two 
criteria (LR2) is designed to accommodate such cases. 
It postulates separate criteria for the two branches of the 
decision boundary. Figure 1H plots an example in which 
pAB . pBA. The decision process involves two consecu-
tive comparisons. First, adopt criterion c1 when x1 , 0 and 
criterion c2 otherwise. Second, respond “different” iff Ld/s 
exceeds the criterion adopted on the first step.

The curvilinear contours of equal likelihood ratios can 
be approximated by angle-shaped piecewise-linear con-
tours (Irwin & Hautus, 1997). In our notation, the LR1 
strategy is approximated by the RC2s strategy and, equiv-
alently, by the CC2s strategy (cf. Figures 1G and 1E). The 
LR2 strategy is approximated by the RC2a strategy in-
troduced here for the first time (cf. Figures 1H and 1I). 
The CC1 strategy is optimal only in the special case of 
unbiased criterion (Figure 1A).

Symmetries and Their Observable Consequences
So, a participant in a same–different experiment can 

adopt a variety of decision rules organized in three fami-
lies. Our goal is to develop a framework for making 
observation-based inferences about these rules. The notion 
of axial symmetry plays a key role in this framework.
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tion of perceptual noise and suboptimal decision making. 
Thus, d ′RC2a is always less than d ′DF2 on the same data.1

Case II: pAB 5 pBA but pAA  pBB
When there are statistically significant differences be-

tween the probabilities to respond “different” to stimuli 
AA and BB, strategies DF1, DF2, RC2a, CC2s, LR1, and 
LR22 can be rejected.

This leaves two covert-classification strategies: CC1 
and CC2a. They predict identical d ′s, because the former 
is a special case of the latter. CC1 can be identified by its 
strong prediction ( pAB 2 .5)2 5 ( pAA 2 .5)( pBB 2 .5), 
proven in Appendix B.

Case III: pAA 5 pBB and pAB 5 pBA
This is the case that is implicitly assumed throughout 

the literature (e.g., Dai et al., 1996; Macmillan & Creel-
man, 2005; Noreen, 1981). There is a common hit rate, 
H 5 pAB 5 pBA, and a common false alarm rate, FA 5 
pAA 5 pBB (Equation 1). All asymmetric rules (DF2, CC1, 
CC2a, and RC2a) can be rejected. Two main contenders 
remain: the differencing strategy with one criterion (DF1) 
and the covert-classification strategy with two symmetric 
criteria (CC2s, which coincides with RC2s). The CC2s rule 
closely approximates the optimal LR1 rule (Irwin & Hau-
tus, 1997) and is much more psychologically plausible. As 
in Case I, the near-optimal rule implies lower d ′ than the 
differencing rule: d ′CC2s , d ′DF1. The discrepancy is most 
pronounced when the probability of responding “different” 
is small (Macmillan & Creelman, 2005, p. 224).

Case IV: pAA  pBB and pAB  pBA
When both symmetries are broken, all decision rules in 

Table 1 must be rejected. The assumptions of independence, 
stimulus unidimensionality, and/or negligible memory 
noise are probably violated. There may be strong sequential 
and/or configural effects that are not captured by the signal 
detection framework. The observers may be following a 
memory-based strategy (Cohen & Nosofsky, 2000).

Statistical Test
The present methodology requires a test of statistical 

difference between two proportions. We recommend the 
chi-squared test3 because of its versatility. Let ni denote 
the number of presentations of stimulus pair i during an 
experimental block, and let yi denote the observed number 
of different responses. The proportions ̂pi 5 yi /ni estimate 
the true response probabilities pi. The null hypothesis is 
that these probabilities are equal for the two stimulus pairs 
under consideration: p1 5 p2 5 p. The pooled proportion 
ˆp in Equation 4 allows a more stable estimate of the sam-
pling variance. When the null hypothesis is correct, the X 2 
statistic in Equation 5 has a χ2 distribution on one degree 
of freedom (Collett, 2003);
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The reversed-classification rule with two asymmetric cri-
teria (RC2a, Figure 1I) is exceptional, because it applies 
different criteria on the two intervals.

The characterization of the likelihood-ratio family 
depends on the overall response bias. Typically, observ-
ers favor same over different responses. In those cases, 
all LR strategies predict pAA 5 pBB. This is because cut-
ting the saddle surface defined by Equation 3 above the 
neutral point produces decision boundaries that are sym-
metric with respect to the negative diagonal (Figure 1H). 
Strategy RC2a, designed to approximate LR2, also fol-
lows this pattern. In the complementary (and rare) case, 
the saddle is cut below the neutral point, and the axis of 
symmetry flips to the positive diagonal. The observable 
manifestations are a preponderance of different responses  
and pAB 5 pBA.

Finally, all three families contain a member whose 
decision boundaries are symmetric with respect to both 
diagonals. Thus, strategies DF1, CC2s, and LR1 predict  
both pAA 5 pBB and pAB 5 pBA.

Methodology

These predictions can be used as empirical tests to 
rule out individual strategies or even whole families. The 
strength of Theorem 1 is that it makes qualitative predic-
tions about the contrasting families. When such a predic-
tion is violated in a given data set, an entire family can 
be ruled out from further consideration. This process is 
referred to as strong inference (Platt, 1964) or falsifica-
tion (Popper, 1963) in philosophy of science. It differs 
from model fitting, where families compete via their 
best-fitting representatives. In strong inference, families 
are ruled out when their qualitative predictions are falsi-
fied. The two methodologies are complementary. Strong 
inference is applied first to narrow the field. No parameter 
search is necessary. Model fitting, which requires search, 
can then be applied to the remaining candidates.

We recommend that the analysis of every same–
different data set begin with two qualitative tests: Is pAA 
equal to pBB? Is pAB equal to pBA? This leads to the fol-
lowing four cases.

Case I: pAA 5 pBB but pAB  pBA
When there are statistically significant differences be-

tween the probabilities to respond “different” to stimuli 
AB and BA, strategies CC1, CC2s, CC2a, DF1, and LR1 
can be rejected. The likelihood-ratio strategy LR2 can be 
rejected too when there is an overall preponderance of dif-
ferent responses. Otherwise, LR2 is technically compat-
ible with the data. It remains psychologically implausible, 
however, because it depends on unrealistic amounts of 
knowledge and processing power.

This leaves only two main contenders: the differencing 
rule with two criteria (DF2) and the reversed-classification 
rule with two asymmetric criteria (RC2a). Unfortunately, 
they imply different d ′s. The RC2a model approximates 
the optimal decision strategy (LR2) and thus needs higher 
perceptual noise to account for the observed error levels. 
The DF2 model accounts for them through a combina-
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The single-interval task was tested during Blocks 1 and 3 on Days 1 
and 6 and was practiced during Blocks 1 and 2 on Days 2–5. The 
same–different task was tested during Blocks 2 and 4 on Days 1 
and 6 and was practiced during Blocks 3 and 4 on Days 2–5.

Seven participants practiced the negative reference direction 
throughout the experiment, except on Blocks 1 and 2 of the pre- and 
posttest, which tested transfer to the positive direction. The direc-
tions were reversed for the other 6 participants.

Procedure. Single-interval trials began with a short beep fol-
lowed 500 msec later by a 400-msec motion stimulus. Two-interval 
trials continued with a 300-msec interstimulus interval followed by 
a second 400-msec stimulus. The observers typed their response on 
the computer keyboard. They scored a bonus point for each correct 
response and lost a point for each error. The bonus was displayed 
above the fixation dot at all times. There was also auditory feedback 
(an unpleasant beep) after errors. See Petrov (2009) for additional 
methodological details.

Results and Discussion
Following our methodology for the same–different 

data, we asked first whether pAA equals pBB. The answer 
seemed to be yes for 11 participants in our sample. None 
of the 11 individual X 2 values was statistically signifi-
cant [median X 2(12) 5 14.2; Equation 5]. The 2 remain-
ing participants violated this equality [X 2(12) 5 32.4 and 
45.5, p , .001]. Next, we asked whether pAB equals pBA. 
The answer is no for the same 11 participants [median 
X 2(12) 5 63.3, p , .001] and yes for the 2 exceptional 
ones [X 2(12) 5 19.8 and 14.9, n.s.].

Thus, the great majority of our observers fall into Case I 
of our classification: pAA 5 pBB but pAB  pBA. Figure 2 il-
lustrates this qualitative pattern. Most of the points on the top 
panel are within the 95% confidence ellipse for the equality 
pAA 5 pBB. The situation on the bottom panel is markedly 
different. The constraint pAB 5 pBA is clearly violated.

According to Theorem 1, these 11 participants could 
not have been using any of the following strategies: CC1, 
CC2s, CC2a, DF1, or LR1. The rejection of the covert-
classification (CC) family is particularly important, because 
it prevents a tempting mistake in the analysis. It would have 
been tempting to assume that many observers would adopt 
a covert-classification strategy in our experimental design. 
The single-interval blocks in the beginning of each session 
demanded overt classification. The path of least resistance 
for the subsequent same–different blocks with the same 
stimuli would have been simply to switch to covert clas-
sification. The inequality pAB  pBA proves that the par-
ticipants did not adopt this strategy. It also indicates that the 
standard analytic procedure, which tacitly assumes pAB 5 
pBA 5 H, produces misleading d ′ estimates for these data!

Our methodology also identifies individual differences. 
Two participants showed a qualitative pattern that differed 
from that of the majority: pAB 5 pBA but pAA  pBB. 
This suggests that these 2 observers adopted the covert-
classification strategy with asymmetric criteria (CC2a). 
Note that the standard analytic procedure is not applicable 
to these data either.

Figure 3 illustrates the individual differences. The top 
panel shows a representative member of the majority; the 
bottom panel shows one of the two exceptions. Circles 
plot hit probabilities ( pAB vs. pBA for each block), Xs plot 
false alarm probabilities ( pAA vs. pBB), and lines connect 

These equations must be applied to observations from a 
single experimental block for a single participant. To ag-
gregate the data across N blocks and/or participants, one 
should calculate N individual X 2s and then add them up. 
The sum has a χ2 distribution on N degrees of freedom. 
One cannot simply add the raw counts, because when 
p1 , p2 for some participants and p1 . p2 for others, the 
inequalities cancel out with misleading effect.

Resources for Calculating d ′ and Bias
Appendix B outlines algorithms for fitting all covert-

classification models (CC1, CC2a, and RC2a). Approxi-
mate d ′ formulas for the optimal (LR1) model are given 
by Macmillan and Creelman (2005, Equation 9.3; see also 
Dai et al., 1996). An algorithm for fitting the differencing 
(DF1) model is given by Macmillan and Creelman (2005, 
Equation 9.8). Open-source MATLAB scripts implement-
ing these algorithms and calculating the corresponding 
d ′ are available at http://alexpetrov.com.

Various indices of response bias have been developed 
for the LR1 and DF1 strategies (Hautus & Collins, 2003; 
Irwin et al., 2001). They all assume that the bias can be 
described with a single number. Consequently, none of 
them is applicable in Cases I or II above.

An Experimental Example

We illustrate this methodology in a perceptual learn-
ing experiment on visual motion-direction discrimination. 
Single-interval ( yes–no) and two-interval (same–different) 
blocks were alternated within subjects for six practice ses-
sions. Only the same–different data are reported here; the 
yes–no data and their implications for perceptual learning 
are reported separately (Petrov, 2009).

Method
Stimuli and Tasks. Each stimulus consisted of 80 black dots that 

moved coherently along parallel tracks inside a white circular aperture. 
The direction of motion could take four possible values: 252.5º ver-
sus 247.5º from vertical for the negative and 37.5º versus 42.5º for the 
positive reference direction. The trials were organized in blocks. The 
reference direction and the task were fixed in each block and varied 
between blocks. Each block began with four demo trials that explicitly 
indicated the reference direction with a line drawn on the screen. The 
reference line was not shown during the experimental trials.

The single-interval task involved a single stimulus presentation per 
trial. The observer was instructed to indicate whether the direction of 
motion was counterclockwise or clockwise from the reference direc-
tion. In a negative block, for example, the task was to press one button 
for 252.5º and another button for 247.5º. The two possible stimuli 
were presented with equal frequencies and in random order.

The same–different task involved two consecutive stimulus pre-
sentations per trial. The two directions of motion were either identi-
cal or differed by 5º. The observer was instructed to press one button 
for same and another button for different. The four possible stimulus 
pairs were presented with equal frequencies and in random order.

Observers. Thirteen students with normal or corrected-to-normal 
vision participated in the study. They were paid $6/h plus a bonus 
contingent on their accuracy.

Design. Each observer completed six sessions: a pretest on 
Day 1, followed by four practice sessions, followed by a posttest 
on Day 6. Each session consisted of four blocks of 240 trials each. 
The task and reference direction were manipulated within subjects. 
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which violates the tacit assumption of the standard ana-
lytic procedure.

Some ambiguity still remains, however. The majority of 
the data sets are consistent with two qualitatively differ-
ent strategies: DF2 and RC2. This illustrates an important 
limitation of the methodology. Although it does narrow 
the field, it cannot fully disambiguate the decision rule 
when pAA 5 pBB.

For some observers, the ambiguity can be resolved 
by complementary data from the single-interval blocks. 

consecutive blocks. Although the overall hit and false 
alarm rates were very similar for these 2 observers, they 
followed different response strategies. In the top panel, 
more circles than crosses lay outside the ellipse, whereas 
the reverse is true for the bottom panel. The standard ana-
lytic procedure is blind to such individual differences.

In summary, the methodology pays off. It pinpointed 
the decision rule for 2 of the observers and dramatically 
narrowed the field of possible rules for the rest. All of 
the observers seemed to use asymmetric decision criteria, 
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Figure 2. Probability to respond “different” to stimulus pairs 
AA versus BB (top) and AB versus BA (bottom). The data are 
consistent with the constraint pAA 5 pBB (top) but violate pAB 5 
pBA (bottom). The ellipses are 95% confidence regions. Each scat-
terplot contains 156 data points (12 blocks 3 13 observers) jit-
tered slightly for visibility. Each probability is estimated from 60 
binary responses.
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Figure 3. Probability to respond “different” to stimulus pairs 
AA versus BB (xs) and AB versus BA (os). Lines connect consecu-
tive experimental blocks. The two panels present two individual 
observers who follow different response strategies, giving rise to 
different qualitative patterns: pAA 5 pBB, pAB  pBA (top), as op-
posed to pAA  pBB, pAB 5 pBA (bottom). The ellipses are 95% con-
fidence regions that the corresponding probabilities are equal.
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that Wang et al. set out to investigate! The 2 remaining 
observers satisfied both symmetry conditions and appar-
ently followed the DF1 strategy.

Our data also revealed individual differences. It cannot 
be taken for granted that all observers in a given experiment 
follow the same decision rule. The symmetry-based meth-
odology can sort the participants into equivalence classes 
in a principled way, and the data analysis can be tailored 
accordingly. In Appendix B, we develop algorithms for fit-
ting the covert-classification and reversed-classification 
models and for calculating the associated d ′.

All of the decision rules in Table 1 impose at least one 
constraint on the observed probabilities. (It is reassuring 

There were observers, however, whose strategy remained 
underdetermined by all available data. Figure 4 illustrates 
1 individual of each kind. In the top panel, the yes–no 
learning curve (Xs with error bars) seems to match the 
same–different learning curve assuming DF2 strategy 
(circles). The comparison must be done at the level of 
learning curves, because d ′ improves across sessions. The 
error bars span approximate 95% confidence intervals for 
the yes–no estimates (Gourevitch & Galanter, 1967, tabu-
lated in Miller, 1996). Note that the differencing strategy 
(circles) always implies a higher d ′ than the near-optimal 
RC2a strategy (triangles). The discrepancy varies across 
observers depending on biases and other factors. For the 
observer in the top panel, the two same–different curves 
differ by approximately 15%, and the yes–no data seem 
to favor the DF2 strategy. For the observer in the bottom 
panel, however, the two same–different curves are closer 
together, and the yes–no curve seems equally consistent 
with either strategy.

General Discussion

In this article, we developed a simple but powerful idea: 
Take full advantage of the fact that the same–different 
task yields four probability estimates per condition (Equa-
tion 2). We examined eight decision rules organized in 
three families: differencing, covert classification, and like-
lihood ratio (Table 1). Each of them partitions the space 
in a particular way and gives rise to various symmetries 
(Figure 1) that impose constraints on the overt response 
probabilities. Theorem 1—our main theoretical result—
derives the specific pattern for each strategy. This leads to 
a systematic methodology for strong inference (Platt, 1964; 
Popper, 1963) based on two simple qualitative tests. Are 
the two homogeneous stimulus pairs (AA and BB) labeled 
“different” with equal probability? If not, all differencing 
and likelihood-ratio strategies are ruled out. Are the two 
heterogeneous stimulus pairs (AB and BA) labeled “differ-
ent” with equal probability? If not, all covert-classification 
strategies (except RC2a) are ruled out.

We presented experimental evidence that neither of 
these constraints can be taken for granted. Yet it is stan-
dard practice to take them both for granted. Reducing the 
data to hit and false alarm rates tacitly assumes that pAB 5 
pBA and pAA 5 pBB. None of the 13 observers in our sam-
ple (nor 15 others in a follow-up experiment; Petrov, 2009) 
showed this pattern. The generality of this finding is a 
matter of further investigation, but it is probably very gen-
eral. Even if these assumptions are only rarely violated, 
however, it still behooves the experimenter to verify them 
in each case. The relevant statistical test is straightforward 
(Equation 5). We recommend it as a standard preamble to 
every report of same–different data.

The test is so simple that it can be applied to published 
data, provided that the four response probabilities are re-
ported separately. We analyzed one such report (Wang 
et al., 2005), which is exemplary in its thoroughness. 
The chi-squared test of the data in their Table V suggests 
that 4 of their 6 observers violated pAA 5 pBB. This rules 
out the very strategies (differencing and likelihood ratio) 
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Figure 4. Comparison of the discrimination performance on 
yes–no and same–different tasks for two observers. The individual 
in the top panel seems to follow a differencing (DF2) strategy. The 
data in the bottom panel are consistent with both differencing 
and reversed classification (RC2a). Each data point is based on 
480 binary observations. The error bars span approximate 95% 
confidence intervals for the yes–no d ′ estimates. The pre- and 
posttests on Days 1 and 6 are omitted for simplicity.
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integrality. A key empirical test is whether performance 
on one attribute is affected by task-irrelevant variation of 
another attribute (e.g., Garner, 1974). This manipulation 
is incompatible with the unidimensional same–different 
task. It can be applied to multidimensional same–different 
judgments (Thomas, 1996), but the decision space be-
comes very complex (at least four-dimensional). GRT 
theorists (e.g., Ashby & Gott, 1988) have explored lin-
ear and quadratic decision rules in spaces of arbitrary 
dimensionality.

Cohen and Nosofsky (2000) presented evidence that 
same–different judgments may rely in part on long-term 
memories for past stimulus pairs. Their extension of the 
exemplar-based random walk model (Nosofsky & Palmeri, 
1997) provides an interesting link to the literature on 
speeded classification. In roving designs, the model gen-
erally predicts asymmetries for both hit and false-alarm 
probabilities and response times. For fixed designs, the 
predictions would depend on factors such as pair presen-
tation frequency and equal-variance assumptions (R. No-
sofsky, personal communication, June 1, 2009).

On the experimental side, there are a few comparisons 
of single-interval and two-interval discrimination designs 
(see Macmillan & Creelman, 2005, p. 228, for a review). 
The comparison of the method of constant stimuli with 
two-interval forced choice has been of particular interest 
(Morgan, Watamaniuk, & McKee, 2000; Nachmias, 2006; 
Vogels & Orban, 1986). To our knowledge, our experi-
ment is one of very few comparisons involving a same–
different task and the first comparison of any kind in a 
learning context. See our empirical report (Petrov, 2009) 
for a detailed discussion.

Take-Home Message
In closing, we reiterate our recommendation to begin 

the analysis of every same–different dataset with these 
simple questions: Are stimulus pairs AA and BB labeled 
“different” with equal probability? What about AB and 
BA? The statistical test is straightforward, and the answers 
are very informative. Add them to your toolbox!
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Appendix A 
Definitions and Proofs

In this Appendix, we build the mathematical infrastructure necessary to prove Theorem 1 stated in the main 
text.

Definition. A region D is symmetric with respect to an axis A when the mirror image s(x) of each point x in the 
region also lies in the region:

	 x ∈ D ⇐⇒ s(x) ∈ D.	 (A1)

Lemma 1. Let the piecewise curve C partition the plane in two or more regions that can be painted in black 
and white so that regions bordering on opposite sides of the curve are always painted in opposite colors. Let 
the boundary C be symmetric with respect to an axis A and have no more than countably many points in com-
mon with it. Then the union of all black regions is symmetric with respect to A and so is the union of all white 
regions.



1022        Petrov

Proof outline. An orientation can be assigned to the curve C so that the black partition is always on the left 
side. To prove that the colored partition is symmetric, it is sufficient to prove that the regions are in a consistent 
relation relative to the oriented boundary after mirror reflection (Kostrikin & Manin, 1989). Axial symmetry 
reverses the orientation of the plane, because the determinant of the transformation is det(s) 5 21 (Kostrikin & 
Manin, 1989). We will prove that it also reverses the orientation of the curve C. The black partition now lies on 
the right side of the reflected curve, thus preserving the original color.

The proof proceeds by induction on the continuous segments of C. Let c be an arbitrary such segment. There 
are two possible cases illustrated in Figures A1A and A1B.

Case 1. c is symmetric with respect to A. Given that it cannot overlap with A (by assumption), the orientation 
of c is reversed after reflection (Figure A1A).

Case 2. The reflection of c is some other segment, d. Then the reflection of d is c. Although the orientation of 
each segment is preserved after reflection, the orientation of the pair c ∪ d is reversed (Figure A1B).

The technical condition that C has no more than countably many points in common with A rules out the 
possibility that c coincides with A. In this problematic case, the partition is still symmetric, but the colors are 
exchanged after reflection.

Definition. Two probability density functions f1 and f2 are mutually symmetric with respect to an axis A when 
for each point x:

	 f1(s(x)) 5 f2(x).	 (A2)

Definition. A probability density function f is symmetric with respect to A when f is mutually symmetric with 
itself.

Lemma 2. Let the probability density functions f1 and f2 be mutually symmetric with respect to an axis A. Let C 
be a curve that satisfies the conditions of Lemma 1 with respect to the same axis. Let S1 and S2 be two stimulus 
pairs with perceptual effects distributed according to f1 and f2, respectively. Then

	 P(“B” | S1 ) 5 P(“B” | S2 ),	 (A3)

where P(“B” | Si ) denotes the probability of covertly classifying Si into the black region demarcated by C.

Proof. Consider the indicator function I(x) that is 1 when x lies in the black region and 0 otherwise. By Lemma 1, 
I(x) 5 I(s(x)), because the reflection s preserves the color. Then

	

P S I f d

I s f s ds

“ ”B | ( ) ( )

( ( )) ( ( )) ( )

1 1

1

( ) =

=
∫ x x x

x x x∫∫
∫= = ( )I f d P S( ) ( ) | .x x x2 2“ ”B 	 (A4)

This uses the mutual symmetry f1(s(x)) 5 f2(x). Also, ds(x) 5 dx because |det(s)| 5 1 (Kostrikin & Manin, 
1989).

A BCase 1 Case 2

d

c

Figure A1. Solid lines with bold arrows show the original curve and its assigned ori-
entation. Dashed lines with arrows show the reflected curve. Although the orientation 
is systematically reversed, the color of each region is preserved after reflection.

Appendix A (Continued)
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Lemma 3. Assume perceptual independence, no memory noise, bivariate Gaussian distributions, and equal 
variance. Let stimulus pairs AA, AB, BA, and BB give rise to perceptual effects distributed according to fAA, 
fAB, fBA, and fBB, respectively. Then

• fAB and fBA are mutually symmetric w.r.t. the positive diagonal
• fAA is symmetric w.r.t. the positive diagonal
• fBB is symmetric w.r.t. the positive diagonal
• fAA and fBB are mutually symmetric w.r.t. the negative diagonal
• fAB is symmetric w.r.t. the negative diagonal
• fBA is symmetric w.r.t. the negative diagonal

Proof. Without loss of generality, we can choose the coordinate system illustrated in Figure 1A. The mean per-
ceptual effects of stimuli A and B are µA 5 2d ′/2 and µB 5 1d ′/2. The common variance is σ2 5 1. Then the 
bivariate Gaussian densities are:

and 
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The positive diagonal defines the mirror reflection s1(x1, x2) 5 (x2, x1), whereas the negative diagonal defines 
s2(x1, x2) 5 (2x2, 2x1). The conclusions of the lemma are verified directly.

Lemma 4. Under standard representational assumptions:
• Any strategy whose decision boundary satisfies the condition of Lemma 1 with respect to the positive di-

agonal implies pAB 5 pBA. That is, the probability to respond “different” is the same for stimulus pairs AB and 
BA.

• Any strategy whose boundary satisfies the condition with respect to the negative diagonal implies 
pAA 5 pBB.

Proof. Follows from Lemmas 2 and 3.
The decision boundaries of all strategies in Table 1 have no more than countably many points in common with 

either diagonal. Thus, the condition of Lemma 1 reduces to axial symmetry.
Proof of Theorem 1. In light of Lemma 4, all that remains to be proven is the axial symmetry of the decision 
rules in Table 1:

• Differencing strategy with two criteria ( DF2). The decision boundary (cf. Figure 1C) consists of two disjoint 
segments with equations x2 2 x1 5 ci, where c1 and c2 are the two criteria. As s2(x2 2 x1) 5 ((2x1) 2 (2x2)) 5 
(x2 2 x1), each segment is symmetric with respect to the negative diagonal. By Lemma 4, pAA 5 pBB. 

• Differencing strategy with one criterion ( DF1). This is a special case of DF2, in which c2 5 2c1 (cf. Fig-
ure 1B). As s1(x2 2 x1) 5 (x1 2 x2) 5 2(x2 2 x1), the two segments are mutually symmetric with respect to the 
positive diagonal. By Lemma 4, pAB 5 pBA.

• Likelihood-ratio strategy with one criterion ( LR1). It can be verified by direct substitution that the likelihood 
ratio Ld/s in Equation 3 is preserved by both s1 and s2:

	 Ld/s(x1, x2) 5 Ld/s(x2, x1) 5 Ld/s(2x2, 2x1).	 (A6)

Thus, any decision boundary Ld/s 5 c is symmetric with respect to both diagonals (Figure 1G).
• Likelihood-ratio strategy with two criteria (LR2). This strategy applies different criteria for points on dif-

ferent sides of the positive diagonal (Figure 1H). The intent is to break this symmetry and allow for pAB  pBA.  
The other symmetry still holds, and pAA 5 pBB.

• Covert-classification strategy with one (CC1) or two (CC2a) asymmetric criteria. The covert classifica-
tion of each individual stimulus is the same, regardless of whether the stimulus was presented first or second. 
Thus, the classification does not change when the presentation order is reversed, which is equivalent to mirror 
reflection with respect to the positive diagonal (Figures 1D and 1F). The proof that p2

AB $ pAA pBB is given in 
Appendix B.

• Reversed-classification strategy with two asymmetric criteria ( RC2a). This decision rule is constructed 
so that the tips of the L-shaped decision boundaries lie on the negative diagonal (Figure 1I). This introduces a 
symmetry with respect to this diagonal, and pAB 5 pBA.

• Covert-classification strategy with two symmetric criteria (CC2s 5 RC2s). As a special case of both CC2a 
and RC2a, this decision boundary is symmetric with respect to both diagonals (Figure 1E).

Appendix A (Continued)
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Appendix B 
Algorithms for Computing d ′ for the Covert-Classification Rules

Covert-Classification Rule With One Criterion
The CC1 decision rule uses a single internal criterion for covert classification (Figure 1D). Let aA denote the 

covert probability for classifying stimulus A as an “A.” Analogously, bA 5 P(“B” | A), bB 5 P(“B” | B), and aB 5 
P(“A” | B). Then the overt probabilities to respond “different” are:

	 pAA 5 aAbA 1 bAaA

	 pAB 5 aAbB 1 bAaB

	 pBA 5 aBbA 1 bBaA

	 pBB 5 aBbB 1 bBaB	 (B1)

Note that pAB 5 pBA. Moreover, aX 1 bX 5 1, because there is only one criterion. The second constraint in 
Theorem 1 follows by direct substitution:

	 ( pAB 2 .5)2 5 ( pAA 2 .5)( pBB 2 .5).	 (B2)

The two covert probabilities are uniquely determined: aA 5 (1 1 √2pAA 2 1)/2, bB 5 (1 1 √2pBB 2 1)/2 
(Pollack & Pisoni, 1971). Thus, the d ′ can be calculated by the standard formula for single-interval designs:

	 d ′ 5 z(aA) 2 z(aB) 5 z(bB) 2 z(bA).	 (B3)

Finally, assuming balanced presentation frequencies, there is an overall bias P(“same”) 5 .5 1 (aA 2 
bB)2/2 $ .5.

Covert-Classification Rule With Two Criteria
The CC2a decision rule is a generalization of CC1 that uses three covert categories: “A,” “B,” and “ambigu-

ous.” This requires two criteria c1 # c2 (Figure 1F). The covert probabilities are given by the Gaussian cumula-
tive density function Φ:

	 aA 5 Φ(c1 1 d ′/2)

	 bA 5 1 2 Φ(c2 1 d ′/2)

	 aB 5 Φ(c1 2 d ′/2)

	 bB 5 1 2 Φ(c2 2 d ′/2)	 (B4)

The observer responds “different” iff one stimulus is unambiguously classified “A” and the other “B.” Thus, 
Equation B1 still holds. However, aX and bX no longer add to 1, and Equation B2 relaxes to:

	 p2
AB $ pAApBB.	 (B5)

Proof. D 5 p2
AB 2 pAA pBB 5 (aAbB 2 aBbA)2 $ 0.

To reduce the problem to one dimension, the covert probabilities in Equation B1 can be expressed as functions 
of a single unknown x:

	 aA(x) 5 x( pAB 1 √D)/pBB

	 aB(x) 5 x

	 bA(x) 5 ( pAB 2 √D)/(2x) 

	 bB(x) 5 pBB/(2x)	 (B6)

From aB 1 bB # 1 and aA 1 bA # 1, we get, respectively:

and
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Finally, Equation  B3 leads to Equation  B8, which can be solved numerically within the bounds in 
Equation B7.

	 z(aA(x)) 2 z(aB(x)) 1 z(bA(x)) 2 z(bB(x)) 5 0.	 (B8)

Once x is determined, the d ′ can be calculated from Equations B6 and B3 and the two criteria from 
Equation B9.

	 c1 5 (z(aA) 1 z(aB))/2

	 c2 5 2(z(bA) 1 z(bB))/2	 (B9)
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Reversed-Classification Rule With Two Criteria
The RC2a decision rule is sensitive to the presentation order. It uses covert criteria c1 # c2 for the first 

and 2c2 # 2c1 for the second stimulus (Figure 1I). The covert probabilities are analogous to Equation B4 with 
subscripts indicating the presentation interval: aA1 5 P(“A” | S1 5 A), etc. The symmetry Φ(u) 5 1 2 Φ(2u) im-
plies that bB2 5 aA1 5 aA, aB2 5 bA1 5 bA, bA2 5 aB1 5 aB, and aA2 5 bB1 5 bB. Equation B1 thus becomes

	 pAA 5 aA1bA2 1 bA1aA2 5 aAaB 1 bAbB

	 pAB 5 aA1bB2 1 bA1aB2 5 a2
A1 b2

A

	 pBA 5 aB1bA2 1 bB1aA2 5 a2
B 1 b2

B

	 pBB 5 aB1bB2 1 bB1aB2 5 aBaA 1 bBbA.	 (B10)

Note that pAA 5 pBB, in agreement with Theorem 1. Equation B5 becomes

	 pAB pBA $ p2
AA.	 (B11)

As before, we express the covert-classification probabilities in terms of a single unknown x:
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Inequalities such as aA 1 bA # 1 and aAaB # pAA impose upper bounds on x:
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It is easy to solve Equation B8 within these bounds using off-the-shelf numerical methods. We use the fzero 
function in MATLAB (MathWorks, 1999). The d ′ can then be calculated from Equations B12 and B3 and the two 
criteria from Equation B9. MATLAB scripts implementing these calculations are available at http://alexpetrov 
.com.
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