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a b s t r a c t

The representation modification hypothesis of perceptual learning attributes the practice-induced
improvements in sensitivity and/or discriminability to changes in the early visual areas. We used motion
aftereffects (MAE) to probe the representations of motion direction. In two experiments, four practice
sessions on a fine direction-discrimination task caused large stimulus-specific improvements in d0 but
no significant stimulus-specific changes in either static or dynamic MAE duration at posttest relative
to a pretest. Power analysis indicated that the data were approximately 100 times more likely given
the hypothesis of no MAE change than the hypothesis of a 10% relative change. In light of converging evi-
dence in the MAE literature, this suggests that little or no change occurred in the cortical representations
of visual motion up to and including area MT. The task specificity of the learning effect challenges the
representation modification hypothesis and supports an alternative—selective reweighting.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction implemented in two related models (Schwabe & Obermayer, 2005;
Visual perceptual learning is defined as practice-induced
improvement in visual tasks (see Fahle & Poggio, 2002; Fine & Jacobs,
2002, for reviews). It has been documented in orientation discrimi-
nation (e.g., Dosher & Lu, 1998), Vernier acuity (e.g., Fahle & Edel-
man, 1993), visual search (e.g., Ahissar & Hochstein, 1997), texture
discrimination (e.g., Karni & Sagi, 1991) face identification (e.g.,
Gold, Bennett, & Sekuler, 1999), and motion detection and discrim-
ination (e.g., Ball & Sekuler, 1987; Huang et al., 2008; Law & Gold,
2008; Liu, 1999; Petrov & Hayes, 2010; Watanabe, Náñez, & Sasaki,
2001). The learning effects are typically long-lasting and (partially)
specific to the particular stimuli used in training (e.g., Ahissar &
Hochstein, 1996, 1997; Ball & Sekuler, 1987; Crist et al., 1997; Fahle
& Edelman, 1993; Liu, 1999).

The mechanisms of perceptual learning are still poorly under-
stood and are a topic of active research (e.g., Gilbert, Sigman, & Crist,
2001; Lu et al., 2009). Two prominent hypotheses in the field are rep-
resentation modification (RM) and selective reweighting (SRW). The
representation modification hypothesis attributes the behavioral
improvement to changes in the early visual representations (e.g.,
Gilbert, Sigman, & Crist, 2001; Karni & Sagi, 1991; Schoups et al.,
2001). It is advanced on the basis of the stimulus specificity of the
learning effect, which is consistent with the stimulus-specific tuning
of neurons in the early sensory areas. The RM hypothesis has been
ll rights reserved.
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Teich & Qian, 2003) that have accounted for some neurophysiologi-
cal correlates of perceptual learning (Schoups et al., 2001; Yang &
Maunsell, 2004). In other sensory modalities, abundant evidence
for training-dependent cortical map plasticity has been found in
the primary somatosensory and auditory cortices (see, e.g., Buono-
mano & Merzenich, 1998; Das, 1997, for reviews).

However, an alternative explanation is equally consistent with
the stimulus specificity of learning (Petrov, Dosher, & Lu, 2005).
It is possible that the system learns which features of the redun-
dant, multifaceted early representations are most diagnostic for
the task at hand and strengthens the read-out connections from
the units encoding these features (Dosher & Lu, 1998; Mollon &
Danilova, 1996). This selective reweighting hypothesis has been
implemented in numerous models that account for a range of
behavioral (e.g., Dosher & Lu, 1999; Lu, Liu, & Dosher, 2010; Petrov,
Dosher, & Lu, 2005, 2006; Seung & Sompolinsky, 1993; Sotiropo-
lous, Seitz, & Seriès, 2011; Vaina, Sundareswaran, & Harris, 1995)
and neurophysiological (Law & Gold, 2008; Meinhardt, 2002; Shiu
& Pashler, 1992). However, most of these studies involve pairs of
tasks that depend on completely unrelated stimulus dimensions.
For example, Shiu and Pashler (1992) used brightness discrimina-
tion and orientation discrimination with line stimuli that varied
in both brightness and orientation. Such experimental designs
demonstrate the role of attention in learning (Ahissar & Hochstein,
2002), but provide little information about the locus of plasticity.
This is because the two tasks depend on stimulus dimensions that
are encoded by non-overlapping populations of neurons. The use of
the same stimulus set for both tasks does not guarantee that the
same sensory representations are engaged in both (Petrov, Dosher,
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1 There are some subtle but important differences between detecting real and
illusory motion. They are discussed in Section 5.

2 As opposed to coarse discrimination of motion in opposite directions, which is
similar to detection (Petrov & Hayes, 2010).
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& Lu, 2005). When the representations overlap little, both RM and
SRW hypotheses predict little transfer across tasks.

Our goal in this article is to test the RM hypothesis. Two condi-
tions are required for a stringent test (Petrov, Dosher, & Lu, 2005):
First, we need tasks that engage the same (or at least strongly over-
lapping) sensory representations. Second, the tasks must depend
on different (or at most weakly overlapping) read-out connections.
These two requirements are hard to satisfy simultaneously. We are
aware of only three studies that satisfy them to some degree (Crist
et al., 1997; Fahle, 1997; Saffell & Matthews, 2003). Two experi-
ments demonstrated lack of transfer of learning across orientation
discrimination and Vernier discrimination (Crist et al., 1997; Fahle,
1997). While a good case can be made that Vernier discrimination
depends on the orientation-selective neurons in V1 (e.g., Weiss,
Edelman, & Fahle, 1993; Wilson, 1986), this remains an assump-
tion and Vernier hyperacuity can also be modeled on different
principles (e.g., Cao & Grossberg, 2005). The third experiment (Saf-
fell & Matthews, 2003) demonstrated lack of transfer of learning
across motion direction discrimination and speed discrimination.
Convergent evidence indicates that most neurons sensitive to vi-
sual motion are tuned conjunctively for both direction and speed
(see, e.g., Britten, 2004, for review). Thus, both tasks engage the
same population of motion-sensitive neurons and the lack of trans-
fer poses a problem for the RM hypothesis. However, these data
cannot rule out one prominent form of representation modifica-
tion—selective increase of the slope of the tuning curves (Schoups
et al., 2001). It is possible that direction-discrimination training
sharpens the direction tuning of certain critical neurons without
affecting their speed tuning, whereas speed-discrimination train-
ing sharpens the latter but not the former. More generally, selec-
tive sharpening seems compatible with task-specific learning of
any two stimulus dimensions. A more stringent test of the RM
hypothesis requires a pair of dissociable tasks based on a single
dimension.

The main idea of this article is to use adaptation to probe the
early representations of visual motion direction. Adaptation is a
valuable tool for studying the visual system (see, e.g., Clifford,
2002; Clifford et al., 2007, for reviews). Here, we test whether prac-
ticing a direction-discrimination task affects the strength of the
motion aftereffect in the trained direction relative to a control
direction.

The motion aftereffect (MAE) is a well-known visual illusion
(see Mather, Verstraten, & Anstis, 1998; Mather et al., 2008, for re-
views). Prolonged exposure to motion in a given direction causes a
subsequent illusory percept of motion in the opposite direction.
The aftereffect is stimulus-specific (see Thompson, 1998, for re-
view). For example, it shows both spatial- and temporal-frequency
tuning (e.g., Bex, Verstraten, & Mareschal, 1996; Cameron, Baker, &
Boulton, 1992; Schofield, Ledgeway, & Hutchinson, 2007). Con-
verging evidence from psychophysics (e.g., Nishida & Sato, 1995;
Verstraten et al., 1999), single-unit recording (e.g., Kohn & Movs-
hon, 2004), brain imaging (e.g., Taylor et al., 2000), transcranial
magnetic stimulation (e.g., Theoret et al., 2002), and other methods
(see Mather et al., 2008, for review) indicates that MAE is not a
monolithic phenomenon but ‘‘an amalgam of neural adaptation
at several visual cortical sites’’ (Mather et al., 2008, p. 481). Our
present experiments use two types of aftereffects: static (sMAE)
and dynamic (dMAE). The adapting stimulus—moving filtered-noise
texture—is the same for both types. They differ in the test stimulus
during the post-adaptation phase: a static texture frame for sMAE
versus dynamic visual noise for dMAE. These two types of afteref-
fects have different properties and seem to arise at different levels
of the motion-processing pathway (e.g., Nishida & Ashida, 2000;
Nishida & Sato, 1995; Verstraten et al., 1999); see (Culham et al.,
1998; Mather et al., 2008, for reviews). In particular, areas V1,
V2, and V3 are implicated in static MAE (e.g., Maruya, Watanabe,
& Watanabe, 2008; Taylor et al., 2000) and MT is implicated in both
static and dynamic MAE (e.g., Kohn & Movshon, 2004; Theoret
et al., 2002; Tootell et al., 1995). We tested both types to probe
for representation modification across these areas.

Various theoretical explanations of the MAE have been pro-
posed (see Mather & Harris, 1998; Mather et al., 2008; Vid-
nyánszky, Blaser, & Papathomas, 2002, for reviews). More
generally, there is an extensive literature on the mechanisms of
motion adaptation and related phenomena such as the direction
aftereffect (see, e.g., Clifford, 2002; Kohn, 2007, for reviews). Some
of these topics are discussed briefly in Section 5 below. While the
details differ, all models agree that motion adaptation impacts the
neuronal populations involved in processing and representing vi-
sual motion. In the closely related domain of orientation process-
ing, the influential model of Teich and Qian (2003) proposes a
common mechanism for both adaptation and perceptual learn-
ing—sharpening of the orientation tuning curves by means of
changing the lateral connections in a recurrent network. According
to this proposal, ‘‘adaptation in behaving subjects may be viewed
as a short-term form of learning’’ (Teich & Qian, 2003, Abstract).

In sum, motion direction discrimination and MAE seem to rely
on strongly overlapping sensory representations and are based
on a single stimulus dimension. The representation modification
hypothesis predicts that extensive discrimination practice near a
particular direction will change the neuronal representations for
this direction. We further hypothesize that this representational
change will cause a detectable change in the strength of the MAE
in the trained direction relative to an untrained control.

Turning to the selective reweighting hypothesis, it is important
to choose the two experimental tasks that rely on different read-
out connections. Only then do the SRW and RM predictions diverge.
The MAE task is very similar to detection.1 We use reported MAE
duration as an index of strength (Pantle, 1998). The observers pressed
a key when the illusory motion was no longer detectable. There is
mounting psychophysical (Hol & Treue, 2001; Jazayeri & Movshon,
2007; Phinney, Bowd, & Patterson, 1997; Regan & Beverley, 1985),
neurophysiological (e.g., Purushothaman & Bradley, 2005; Raiguel
et al., 2006), and computational (e.g., Jazayeri & Movshon, 2006; Pet-
rov, Dosher, & Lu, 2005; Seung & Sompolinsky, 1993) evidence that
detection and fine2 discrimination rely on different read-outs. Thus,
we use fine discrimination training in our experiments. The observers
practiced to discriminate small differences in motion direction from
trial to trial. We hypothesize that the fine-discrimination read-out dif-
fers from the MAE read-out. Therefore, if perceptual learning occurs
via selective reweighting of the read-out connections from unchang-
ing representations, fine discrimination practice should have no effect
on the MAE.

The RM and SRW hypotheses thus make opposite predictions
about the interaction of fine-discrimination practice and MAE.
These predictions were tested in two experiments.

2. Experiment 1

The first experiment uses static and dynamic MAE to probe for
practice-induced changes at different levels of the visual hierarchy.
We use a moving filtered-noise texture for the adapting stimulus in
both cases. The test stimulus is a static texture frame on sMAE tri-
als and multiple frames of dynamic visual noise on dMAE trials.
The experimental schedule begins with a MAE pretest session, fol-
lowed by four discrimination sessions practicing one particular
direction, followed by a MAE posttest session. A final discrimina-



Fig. 1. The stimuli were filtered-noise textures moving behind a circular aperture.
On discrimination trials, the texture moved in one of four possible directions
(depicted by arrows) relative to an implicit reference direction (dotted line). The
adapting stimuli on motion-aftereffect trials were the same, except that they moved
for 10 s rather than 397 ms. [Note: The fixation dot at the center and the angles
between the directions are exaggerated for visibility.]

6 A.A. Petrov, N.M. Van Horn / Vision Research 61 (2012) 4–14
tion session with the orthogonal direction verifies the specificity of
the learning effect on the fine discrimination task. This experimen-
tal design produces the following three binary factors: Session
(pretest vs. posttest) � Direction (trained vs. control) � Type (sta-
tic vs. dynamic). All three factors are crossed within each partici-
pant. The Direction factor is counterbalanced between participants.

The question of main interest is whether there is a statistically
significant interaction between the Session and Direction factors.
The RM hypothesis predicts such interaction whereas the SRW
hypothesis predicts no interaction. We use analysis of variance
(ANOVA) to test for statistical significance. A technical difficulty
arises at this point because the SRW prediction amounts to assert-
ing the null hypothesis in the ANOVA (Cohen, 1992; Keppel & Wic-
kens, 2004). To make such null result meaningful, the test must
have sufficient statistical power to detect the effect if, in fact, the
RM hypothesis is correct and practice does induce direction-spe-
cific changes in the MAE. This concern is addressed in four ways:
First, the adapting stimuli on the MAE sessions are as similar as
possible to the training stimuli on the discrimination sessions. Sec-
ond (and most important), the statistical test is performed individ-
ually for each participant. This leverages the power across multiple
participants. The probability to fail to detect a true effect (‘‘Type II
error’’) decreases exponentially with the number of independent
tests. Thus, even though the individual tests may have modest
power, the power of the combined test increases dramatically.
Third, we use a priori planned contrasts to maximize the power
of each individual test to detect the specific kind of interaction pre-
dicted by the RM hypothesis—see Section 2.1.6 for details. Fourth,
we calculate explicitly the smallest effect size that our leveraged
test is expected to detect at the conventional significance level
(p < .05).
2.1. Method

2.1.1. Observers
The participants were 11 students at the Ohio State University

with normal or corrected-to-normal vision. They were naïve to
the purposes of the experiment and were paid $6 per hour plus a
bonus contingent on their accuracy.
2.1.2. Stimuli and apparatus
The stimuli were filtered-noise textures moving coherently at a

constant speed of 12 deg/s behind a circular aperture (Fig. 1). The
filter had a Gaussian cross-section along the frequency axis in
the Fourier domain and was radially symmetric at all directions.
The spectral power peaked at 3 cpd and the bandwidth was 4 oc-
taves (full width at half height). A new texture was generated on
every trial by applying the same filter to a fresh sample of indepen-
dent, identically distributed Gaussian noise. Consecutive, overlap-
ping frames were cut out from a larger texture patch and
presented at 96 Hz on a 2100 NEC AccuSync 120 color CRT using
the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) in The
MathWorks (2009). The direction of motion was manipulated by
rotating the individual frames via OpenGL calls to the ATI Radeon
HD2600 Pro graphics card. The aperture was implemented by a cir-
cular mask that was fully transparent at radius R = 9.5 cpd, fully
opaque at R = 10.5 cpd, and ramped down linearly in between. A
small red fixation dot (14.2 min in diameter) marked the stimulus
center at all times. The monitor gamma function was estimated via
a psychophysical matching procedure (cf., Colombo & Derrington,
2001) and was verified with a Minolta 1� luminance meter. A soft-
ware lookup table defined 255 evenly spaced luminance levels be-
tween Lmin = 1.5 cd/m2 and Lmax = 32.5 cd/m2. The display was the
only light source in the room and was viewed binocularly with
the natural pupil from a chin rest located�93 cm away. At that dis-
tance, 1� of visual angle subtended �42 pixels (1024 � 768
resolution).
2.1.3. Discrimination task and procedure
The fine direction discrimination task was defined with respect

to a reference direction h that was set implicitly for each block. The
actual motion direction took four possible values: (h � 3.5), (h � 2),
(h + 2), and (h + 3.5) degrees from vertical. Each block presented
120 stimuli of each kind. The instructions designated the first
two directions as ‘‘counterclockwise’’ and the other two as ‘‘clock-
wise’’ and the observers made a binary discrimination choice by
pressing one of two keys on the computer keyboard.

Each trial began with a brief beep. The texture appeared 500 ms
later, moved for 397 ms, and disappeared. The beep onset always
preceded the texture onset by exactly 500 ms, and thus could serve
as a reliable attentional cue. A bonus system helped to motivate
the observers and provided feedback. The reward for each correct
response was a bonus point. The penalty for each error was the loss
of a bonus point, an unpleasant beep, and the addition of 250 ms to
the 800-ms intertrial interval. The cumulative bonus was displayed
prominently at all times and was converted to dollars and cents
after the last session.
2.1.4. MAE task and procedure
Each MAE trial consisted of three phases: adaptation, MAE test,

and reset. The adaptation duration was 10 s, the MAE duration was
the dependent variable, and the reset duration was adjusted to
make the trial total exactly 30 s. The adapting stimuli were the
same as in the discrimination task, except that their duration
was �25 times longer. The adaptation duration (10 s) was deter-
mined in a pilot experiment and was designed to avoid ceiling
and floor effects. The observers were instructed to fixate the sta-
tionary red dot in the middle of the display throughout the adap-
tation period. As an incentive for doing so, a simple attentional
task provided an opportunity to score bonus points. The motion
direction alternated between (h � 3) and (h + 3) at random inter-
vals and the participants pressed a key whenever they detected a
change. A variable number of such changes occurred on a trial
and the bonus points scored for detecting them were visible
throughout the adaptation period.
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The test phase presented stimuli of two kinds: static and dy-
namic. On static (sMAE) trials, the test stimulus was a stationary
frame of the same texture (Fig. 1). It appeared to move in direction
�h due to the aftereffect. On dynamic (dMAE) trials, the test stim-
ulus was dynamic visual noise. That is, each frame was a mosaic of
small square tiles of size 4 � 4 pixels. (Individual-pixel noise
tended to blend into near-uniform gray.) The intensity of each tile
was drawn independently from a Gaussian distribution and resam-
pled 96 times per second. The semitransparent circular mask was
applied throughout. This stimulus contained no globally coherent
motion energy and yet it appeared to move due to the aftereffect.
The observers were asked to press a key when the apparent motion
stopped. The re-appearance of the bonus (which was not displayed
during the test phase) signaled that the response had been
registered.

The third and final phase was identical for both sMAE and dMAE
trials. Dynamic noise was presented for the reminder of the dura-
tion in an effort to reset the motion processing system and mini-
mize adaptation carry-overs across trials (von Grünau, 2002). It
also removed the incentive to report short MAE durations because
all trials lasted for 30 s regardless of the participant’s response.3 A
brief alert beep signaled the beginning of the next trial.
2.1.5. Experimental design and presentation schedule
The experiment involved two reference directions: h = �50� and

+40� from vertical. We avoided the diagonal directions to discour-
age verbalizable decision strategies. For six participants, the
trained direction was �50 and the control direction was +40; these
values were reversed for the other five participants. Each partici-
pant completed 2 MAE sessions (on days 1 and 6) and five discrim-
ination sessions (on days 2–5 and 7). The MAE sessions consisted of
84 trials, whereas the discrimination sessions consisted of 960 tri-
als. Each MAE session was divided into seven blocks and the
observers were encouraged to rest between the blocks. The MAE
duration was measured repeatedly for each combination of refer-
ence direction (trained vs. control) and type (static vs. dynamic).
Each block presented three replications of each combination, in
random order. The discrimination sessions were divided into two
blocks, which were further subdivided into ‘‘miniblocks.’’ The ref-
erence direction h was the same throughout the four practice ses-
sions—this is what made it the trained direction for this individual.
Each miniblock presented a counterbalanced, randomized se-
quence of trials with small clockwise and counterclockwise devia-
tions around h (see Section 2.1.3). After the MAE posttest on day 6,
there was one final discrimination session. The first miniblock (120
trials) of this session revisited the trained reference direction and
transitioned back to the discrimination task. Then h was switched
to the orthogonal direction to assess the specificity of the discrim-
ination learning effect.
2.1.6. Power analysis
The question of main interest is whether the MAE duration dif-

fers significantly between the trained and control directions at
posttest. The conventional way to answer this question is to test
the Session � Direction interaction in a within-subject ANOVA.
However, the statistical power of this test would be relatively
low. We needed to maximize the power to give the representation
modification hypothesis a fair hearing. We conducted a detailed
power analysis to make a null effect interpretable. Power calcula-
tions required an explicitly specified alternative hypothesis (Co-
hen, 1992; Keppel & Wickens, 2004). This gave a distinctly
3 On a few (<2%) of the trials, no response was made before the deadline. These
cases were attributed to lapses of attention and omitted from the analysis. Many of
these lapses came from one particular observer.
Bayesian flavor to our frequentist analysis. We examined a family
of such hypotheses defined by an effect-size parameter c.

The crossing of the Direction and Session factors produce four
conditions: ‘‘trained at pretest,’’ ‘‘control at pretest,’’ ‘‘trained at
posttest,’’ and ‘‘control at posttest.’’ The first two are not expected
to differ because the reference directions are (essentially) symmet-
rical and counterbalanced between participants. Let M denotes the
MAE duration for both pretest conditions as shown in the top sec-
tion of Table 1. Let us temporarily4 assume that the MAE in the con-
trol direction does not change between pretest and posttest. Thus,
the control MAE duration at posttest is also M.

The trained direction at posttest is the critical condition. The RM
hypothesis predicts a change there, whereas SRW predicts the
same MAE across the board (Table 1). It is convenient to express
the change in relative units by introducing the multiplicative
parameter c. It can be positive or negative. For example, c = �.10
represents the hypothesis that perceptual learning causes a 10%
drop in MAE duration.

A conventional ANOVA would partition the variance in our data
into two main effects and one interaction effect. Each of them has 1
degree of freedom in our design and thus can be expressed as a
planned contrast (Keppel & Wickens, 2004). The corresponding
coefficients are listed in Table 1. The rightmost column shows
the predictions of the RM hypothesis. The predicted MAE change
is dispersed across all three tests, which dilutes the statistical
power of any one of them. To focus the power, we replaced tests
2 and 3 by the simple-effect tests labeled 4 and 5 in Table 1. This
concentrated the predicted change into a single test—the one that
compares the MAE durations for the trained and control directions
at posttest. The coefficients for this critical test are listed in the last
row in the table. Note that contrasts 1, 4, and 5 form a mutually
orthogonal set. Thus, we can use the same error term and the same
significance level as the conventional partitioning (Keppel & Wic-
kens, 2004). The Type factor (static vs. dynamic) is orthogonal to
all these contrasts. Although not shown in Table 1, it was included
in the analysis and the associated variance was subtracted from the
error term. We adopted significance level a = .05 for all power
calculations.

To increase the power still further, a separate ANOVA was per-
formed for each individual participant. These analyses capitalized
on the fact that each cell of our experimental design contained
21 replications per observer. A group-level ANOVA would use the
cell means only and thus miss the valuable information contained
in these multiple replications. The outcomes of the individual tests
were combined using the Bernoulli formula for repeated indepen-
dent trials (Feller, 1957).

2.2. Results and discussion

2.2.1. Discrimination data
Two discriminability values (d0 Macmillan & Creelman, 2005)

were calculated for each observer in each block: for the easy
(h ± 3.5) and difficult (h ± 2) pair of stimuli. Fig. 2 plots the
group-averaged learning curves. The classic pattern was clearly
replicated—the performance improved with practice but the
improvement was partially specific to the trained direction, hence
the drop after the switch to the orthogonal (control) direction on
the last session.

The response times (RTs) also improved with practice. The RT
distributions were fitted by a model describing the process of accu-
mulating sensory evidence over time and making a binary decision.
We used the diffusion model (Ratcliff, 1978; Ratcliff & McKoon,
2008). This analysis was based entirely on the discrimination data
4 The final analysis does not depend on this assumption; it is introduced here for
expository convenience only.



Table 1
Top section: Motion-aftereffect (MAE) duration patterns predicted by the selective reweighting (SRW) and representation modification (RM) hypotheses of perceptual learning. M
denotes the MAE duration at pretest and c is an effect-size parameter. Middle and bottom sections: Coefficients of the planned linear contrasts for the two types of analysis of
variance (ANOVA) discussed in Section 2.1.6.

Pretest Posttest Predictions

Trained Control Trained Control SRW RM

MAE duration predicted by
Selective reweighting (SRW) M M M M
Representation modification (RM) M M (1 + c)M M

Conventional ANOVA
(1) Main effect of Session �1 �1 +1 +1 0a cM/4a

(2) Main effect of Direction +1 �1 +1 �1 0 cM/4
(3) Session � Direction �1 +1 +1 �1 0 cM/4

ANOVA using simple effects
(1) Main effect of Session �1 �1 +1 +1 0a cM/4a

(4) Direction at pretest +1 �1 0 0 0 0
(5) Direction at posttest 0 0 +1 �1 0 cM/2

a Note: The predictions for the main effect of Session assume (incorrectly) that the response criterion does not change from pretest to posttest.

0
1

2
3

0 2 4 6 8 10

Discrimination Blocks

d’

Easy (Trained)
Easy (Control)
Difficult (Trained)
Difficult (Control)

Fig. 2. Learning curves for the discrimination task. Group average of the 11
participants in Experiment 1. The error bars are 90% within-subject confidence
intervals. The shaded areas mark the two motion aftereffect sessions.
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and is published separately (Petrov, Van Horn, & Ratcliff, 2011,
summarized in Section 4). The decision-making aspects of the dis-
crimination task are not relevant for the interpretation of the MAE
data. Fig. 2 contains the information needed for our present pur-
poses. The training manipulation was successful—by the time of
the MAE posttest (depicted by the shaded area), the d0 for the
trained direction seemed to increase by approximately 50% relative
to its initial level.

2.2.2. MAE data
Fig. 3 plots the mean MAE durations for the group average (large

panel) and for the 11 individual observers (small panels). As ex-
pected, there were no significant differences between the two refer-
ence directions at pretest. The simple effect of Direction at pretest
(contrast 4 in Table 1) was not significant in the group-level data
(F(1,10) < 1, n.s.). Nor was it significant in 10 of the 11 individual AN-
OVAs. It did reach significance (F(1,160) = 4.21, p = .042) for 1 obser-
ver, but this appears to be a Type I error. Recall that the two
directions (h = �40 and +50) were symmetrical with respect to the
vertical and there is no reason to expect MAE differences prior to
the discrimination training.

The main question is whether this symmetry was broken after
training with one direction but not the other. The data in Fig. 3
show no evidence for any significant asymmetry at posttest. The
two directions (plotted with o’s and �’s, respectively) continued
to elicit very similar MAEs. The simple effect of Direction at post-
test (contrast 5 in Table 1) was not significant in the group-level
analysis (F(1,10) < 1, n.s.). More importantly, none of the 11 indi-
vidual tests revealed any significant differences either. The individ-
ual F values for this critical test are printed above their
corresponding panels in Fig. 3.

The average statistical power of the individual tests was esti-
mated as follows. The mean square error (MSE) of each individual
ANOVA was divided by the (squared) grand mean MAE for the corre-
sponding observer. The median of these normalized error terms was
.10 in our sample (mean = .13, SD = .10). The effect-size parameter c
in Table 1 is expressed in the same normalized units (Section 2.1.6).
We calculated the power for a range of effect sizes on the basis of the
median normalized MSE using standard formulas (Keppel & Wic-
kens, 2004). For the critical test (contrast 5 in Table 1), we obtained
power estimates P = {.050, .109, .304, .586, .827} for effect sizes
c = {0, ±.05, ±.10, ±.15, ±.20}, respectively.

This is the main result of the present article, so let us examine it
more closely. Consider the hypothesis that the MAE did, in fact,
change by 10% (c = .10). According to the above estimate, there is
approximately 30% chance to detect a change of this size in the
data from one (median) observer. In other words, the majority of
the tests (70%) will fail to detect it (Type II error). Clearly, a nega-
tive outcome on one individual test does not warrant any strong
conclusions. (The null result of the group-level analysis is similarly
inconclusive.) However, the probability of observing 11 such fail-
ures on 11 independent tests is only p = .0185. Thus it is very un-
likely that the collective pattern in Fig. 3 could occur if the
hypothesis c = .10 were true. The leveraged test has enough statis-
tical power to reject this hypothesis at the 5% significance level.
Bigger changes (c P .15) can be rejected strongly (p < .0001). Very
small MAE changes (c = .05) are compatible with these data
(p = .28).

Consider now the selective-reweighting prediction that MAE
did not change at all (c = 0). The probability to incorrectly reject
a true null hypothesis (Type I error) is a = .05 for each individual
test. The probability of 0 rejections on 11 tests is (1 � a)11 = .569.
Thus, our data pattern is 30 times more likely to occur under selec-
tive reweighting than under representation modification involving
10% MAE change.

The main effect of Session (contrast 1 in Table 1) was significant
for eight individuals. The MAE duration at posttest compared to pre-
test increased for four of them and decreased for the other four. Be-
cause of the cancelation of these inconsistent shifts, the effect did
not reach significance in the group-level ANOVA (F(1,10) = 0.33).
We attribute these individual differences to the subjective choice
of the response criterion. Recall that the task was to press a key when
the apparent motion stopped. It seems that the observers had
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Fig. 3. Mean motion aftereffect (MAE) durations in Experiment 1. The large panel plots the group average. The error bars are 90% within-subject confidence intervals. The pre
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adopted different criteria and changed them across sessions in idio-
syncratic ways. The lack of significant Session � Direction interac-
tion (as tested by contrasts 4 and 5 above) indicates that these
criteria were applied consistently for both directions.

The Type factor had a significant main effect for 9 individuals.
Moreover, it was the one effect that reached significance at the group
level (F(1,10) = 18.2, p < .002). The MAE lasted significantly longer
on dynamic trials than on static ones (Fig. 3). We attribute this to
the random fluctuations in the dynamic-noise stimuli. The Ses-
sion � Type interaction was significant for six observers but not
for the group (F(1,10) = 2.01, n.s.). The general pattern was that sta-
tic and dynamic MAE differed more at pretest than at posttest. One
possible interpretation of this interaction is that the response crite-
ria became better calibrated as observers gained experience with the
MAE task. The Direction � Type interaction was not significant for
any individual participant, again suggesting consistent response cri-
teria for both directions. The three-way interaction (S � D � T) was
significant for only 1 of the 11 observers (F(1,160) = 4.21, p = .042,
probably a Type I error).

In conclusion, the data from Experiment 1 suggest that the MAE
duration did not change (or changed very little) with discrimination
practice. This challenges the representation modification hypothe-
sis. There is, however, one important theoretical possibility that
was not addressed in this experiment. The test stimulus in MAE
appears to move in the direction that is opposite to the direction
of the adapting stimulus. Given that the trained direction was used
only for the adapting stimulus in Experiment 1, the illusory motion
was never aligned with the trained direction. It was opposite to it.
Previous research (e.g., Ball & Sekuler, 1987) indicates that the
improvement in motion direction discrimination does not transfer
to the opposite direction. This opens the possibility that representa-
tion modification did occur but was not detected because Experi-
ment 1 did not test the MAE in the relevant direction. We
conducted a second experiment to evaluate this possibility.

3. Experiment 2

This experiment was identical to Experiment 1 except that the
MAE duration was measured in four directions: h = �50, +40,
+130, and �140 relative to vertical. Also, all dynamic tests were
dropped to make room for the static tests in the new directions.

3.1. Method

3.1.1. Observers
Sixteen new participants were recruited from the same population

and were paid the same hourly rate and bonus as in Experiment 1.

3.1.2. Stimuli, task, and procedure
The stimuli and apparatus were the same as in Experiment 1.

The fine discrimination task and procedure were also the same.
The MAE sessions contained static trials only—21 replications in
each of the four directions. There were no dynamic trials and thus
the MAE session length (and hence statistical power) was the same
as in Experiment 1.

3.1.3. Experimental design and presentation schedule
Half of the participants trained with h = �50 and the other half

with +40. There was a switch to the orthogonal upward direction
on the last session, as in Experiment 1. The two downward direc-
tions (+130 and �140) were never used for discrimination. They
were only used for the adapting stimuli on MAE trials.
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3.1.4. Power analysis
Because the Direction factor has four levels (and hence 3 degrees

of freedom), it cannot be formulated as a single linear contrast. A set
of three such contrasts would be necessary. This negates the advan-
tages of the alternative analysis that was used in Experiment 1. Here
we used the conventional partitioning of the variance into main ef-
fects and interactions. An ANOVA was performed for each individual,
the power was calculated for a range of effect sizes using standard
formulas (Keppel & Wickens, 2004), and the outcomes of the individ-
ual tests were combined as in Experiment 1.

3.2. Results and discussion

3.2.1. Discrimination data
The d0 learning curves for the discrimination task are plotted in

Fig. 4. It closely replicates the results of Experiment 1 (Fig. 2). The
d0 for the trained direction (solid symbols) improved with practice
but the improvement transferred little to the control direction
(open symbols).

3.2.2. MAE data
Fig. 5 shows the mean aftereffect durations for the group aver-

age (large panel) and for the 16 individual observers (small panels).
The results of Experiment 1 were replicated. Most importantly, the
Direction � Session interaction was not statistically significant for
15 of the 16 observers. The individual F values for this critical test
are printed above the corresponding panels in Fig. 5. One observer
did show a significant interaction (F(3,45) = 3.22, p < .025) but
their data (lower right-hand corner in Fig. 5) suggest that it was
due to an anomalously low MAE for the control direction at pre-
test—an apparent Type I error. The group-level test did not reach
significance (F(3,45) = 0.84).

The normalized mean square error of each individual ANOVA was
calculated as in Experiment 1. The median of the new sample was
MSE = .11 ( mean = .12, SD = .06), replicating our earlier results. On
the basis of this error term, we calculated the power to detect the
Direction � Session interaction in the data from one (median) obser-
ver. The power estimates were P = {.050, .083, .202, .387, .605} for ef-
fect sizes c = {0, ±.05, ±.10, ±.15, ±.20}, respectively. The probability
of obtaining exactly 1 significant outcome on n independent tests
was calculated by the formula p = nP(1 � P)n�1 (Feller, 1957). The re-
sults were p 6 {.37, .36, .11, .004, .00001} for n = 16 and the effect
sizes listed above.

Experiment 2 thus had slightly less statistical power than Exper-
iment 1. The hypothesis that MAE changes by 15% or more can be re-
jected strongly (p < .004) but the hypothesis c = .10 cannot (p = .11).
Still, the data pattern is 3.4 times more likely to occur under the null
hypothesis (c = 0) than under a 10% change. This reinforces the main
conclusion of Experiment 1: The MAE duration did not change (or
changed very little) with discrimination practice. The new result is
that this was demonstrated for adapting stimuli moving not only
in the trained direction but in the opposite direction as well.

The lack of main effect of Session at the group level was replicated
too (F(1, 15) = 1.55, p = .23). Averaged across all four directions, the
MAE duration at posttest compared to pretest increased signifi-
cantly for two individuals and decreased significantly for nine oth-
ers. This replicated the finding that different observers adopt
different response criteria and change them in idiosyncratic ways.
Finally, the Direction factor did not have a significant main effect
for the group (F(3,45) = 0.16) but did for eight individuals, mostly
due to differences between the upward and downward directions.
5 ±80% bootstrap confidence interval, see Petrov, Van Horn, and Ratcliff (2011), for
details.

6 The DM analysis suggested a second learning mechanism that improved the
timing of the decision-process onset relative to the stimulus onset. It is not discussed
here because it does not affect the interpretation of the MAE data.
4. Decision-making aspects

The present article focused on the MAE, whereas a companion
article (Petrov, Van Horn, & Ratcliff, 2011) focused on the discrimi-
nation sessions. Because of their homogeneity, the data from Exper-
iments 1 and 2 were analyzed together. A learning index (Fine &
Jacobs, 2002) was calculated to quantify the increase of d0 relative
to its initial level: LI ¼ d08 � d01

� �
=d01, where the subscripts denote

block numbers (cf. Figs. 2 and 4). It was5 LI = .55 ± .08 for the average
learning curve in the combined sample. A specificity index (Ahissar &
Hochstein, 1997) quantified the disruption caused by the switch to
the control direction: SI ¼ d08 � d09

� �
= d08 � d01
� �

. It was SI = .60 ± .10
(Petrov, Van Horn, & Ratcliff, 2011). In words, the average d0 improved
by approximately 55% after 4 days of discrimination practice but 60%
of this improvement were specific to the trained direction.

As the response times (RTs) also improved with practice, the d0

indices underestimate the true learning effect. The diffusion model
(DM) is a valuable tool for analyzing joint accuracy and RT data
(Ratcliff, 1978; see Ratcliff & McKoon, 2008, for review). Just as sig-
nal detection theory (Macmillan & Creelman, 2005) converts hits
and false alarms into theoretically motivated estimates of discrim-
inability and bias, the DM converts hits, false alarms, and RT distri-
bution statistics into estimated parameters of various processing
components. The DM accounted very well for the detailed discrim-
ination data and re-expressed the regularities in these data in
terms of seven parameters per observer per block (Petrov, Van
Horn, & Ratcliff, 2011). The drift rate parameter is especially impor-
tant for our present purposes because it quantifies the sensory evi-
dence feeding into the decision process. By the end of training, the
average drift rates were two times greater than their initial level
(LI = .99 ± .23). This accounted for both the observed d0 increase
(Figs. 2 and 4) and part6 of the RT decrease. The learning effect
was partially specific to the trained direction (SI = .68 ± .09).

5. General discussion

The present study tested a prediction of the representation mod-
ification hypothesis of perceptual learning. According to this
hypothesis, practicing a direction-discrimination task induces stim-
ulus-specific changes in the cortical representation of visual motion.
In turn, these changes predict stimulus-specific changes in the
motion aftereffect. In two experiments, fine-discrimination practice
caused large stimulus-specific improvements in d0 but no significant
stimulus-specific changes in MAE duration. Power analysis indi-
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cated that the data were approximately 100 times7 more likely given
the hypothesis of no MAE change than the hypothesis of a 10% relative
change.

Section 1 cited convergent evidence that the MAE arises in the
cortical areas that process and represent visual motion. Recall that
areas V1, V2, and V3 are implicated in static MAE (e.g., Maruya,
Watanabe, & Watanabe, 2008; Taylor et al., 2000) and MT is impli-
cated in both static and dynamic MAE (e.g., Kohn & Movshon,
2004; Theoret et al., 2002; Tootell et al., 1995). The absence of
significant stimulus-specific changes in either static or dynamic
MAE suggests that little or no change occurred in the cortical rep-
resentations of visual motion up to and including area MT. This
challenges the RM hypothesis.

This inference depends on two premises: (i) that our tasks
engaged the same population of motion-sensitive neurons and (ii)
that modifying these internal representations would cause detect-
able changes in the MAE. We consider (and reject) two alternative
interpretations of our results that negate these premises in turn.

The first alternative interpretation points out, correctly, that
overlap at the level of cortical areas may not necessarily imply
overlap in the specific neurons that determine the behavioral out-
7 These odds (or Bayes factors, Kass & Raftery, 1995) combine multiplicatively
across data sets. They were 30 and 3.4 in Experiments 1 and 2, respectively.
come in our two experimental tasks. There is mounting evidence
(e.g., Hol & Treue, 2001; Jazayeri & Movshon, 2007; Purushoth-
aman & Bradley, 2005) that the neurons that are most diagnostic
for fine discrimination are those whose direction preferences are
shifted away from the discrimination boundary. The tuning curve
of these flanking neurons has the steepest slope at the boundary
(Jazayeri & Movshon, 2006; Petrov, Dosher, & Lu, 2005; Seung &
Sompolinsky, 1993). The psychophysical demonstrations of this
(Clifford et al., 2001; Hol & Treue, 2001; Phinney, Bowd, & Patter-
son, 1997; Regan & Beverley, 1985) are particularly relevant here
because they involve adaptation (see Clifford, 2002, for review).
Fine-discrimination thresholds increase by up to 60% for motion
directions 20–30� on either side of the adaptor (Hol & Treue,
2001; Phinney, Bowd, & Patterson, 1997) and for orientation angles
10–15� on either side (Clifford et al., 2001; Regan & Beverley,
1985). The discrimination threshold at the adapted direction or ori-
entation decreases by up to 20% (Clifford et al., 2001; Phinney,
Bowd, & Patterson, 1997; Regan & Beverley, 1985). The latter
improvement has been attributed to disinhibition of the flanker
neurons when the neurons tuned for the boundary are suppressed
by adaptation (Phinney, Bowd, & Patterson, 1997). Other explana-
tions are also possible (e.g., Clifford et al., 2001; Seriès, Stocker, &
Simoncelli, 2009). In one way or another, the effect seems to arise
from the lateral interactions among the tuned mechanisms.
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The detection thresholds, on the other hand, are most elevated at
the adapted direction (e.g., Hol & Treue, 2001) or orientation (e.g.,
Regan & Beverley, 1985). This unimodal pattern is qualitatively dif-
ferent from the Mexican-hat pattern of change in the fine-discrimi-
nation thresholds. This is why Section 1 cited these studies in
support of the claim that the two tasks in our experiments rely on
different read-out connections.

In light of this evidence, why should we expect an interaction be-
tween fine-discrimination training and the MAE under the represen-
tation modification hypothesis? For concreteness, consider the
preeminent RM proposal: Perceptual learning sharpens the tuning
curves of the flanker neurons on either side of the trained reference
direction (Schwabe & Obermayer, 2005; Schoups et al., 2001; Teich
& Qian, 2003; Yang & Maunsell, 2004). The neurons tuned for the ref-
erence direction itself need not be modified.8 Given that the adapting
stimuli on our MAE trials were very close to the reference direction,
why should we expect a change in MAE triggered by modifications
in the flanker neurons 20–30� away?

The answer is threefold: First, there are well documented lateral
interactions among the neurons in the early sensory areas (e.g., Gil-
bert, 1992). The horizontal collaterals in V1, for example, contribute
to orientation sensitivity (e.g., Nelson et al., 1994; Somers, Nelson, &
Sur, 1995), contrast gain control (e.g., Heeger, 1992), and context
integration (e.g., Gilbert et al., 2000). As discussed above, release
from lateral inhibition is one likely mechanism of the improvement
of the discrimination threshold at the adapted direction (Phinney,
Bowd, & Patterson, 1997). The RM models (Schwabe & Obermayer,
2005; Teich & Qian, 2003) explicitly attribute perceptual learning
to plasticity in the recurrent lateral connections. Second, adaptation
affects the flanker neurons too—a phenomenon known as flank adap-
tation (e.g., Kohn & Movshon, 2004; see Kohn, 2007, for review). The
effects of adaptation are not confined to the neurons that respond
most strongly to the adaptor. Thus, if practice had modified signifi-
cantly the response properties of the flanker neurons on both sides
of the reference direction in our experiments, it is not unreasonable
to expect a significant modification in the strength and/or time
course of adaptation along this direction as well.

Finally, the detection of illusory motion is characterized by addi-
tional smoothing and integration compared to real motion. There is
strong evidence that ‘‘the perceived global motion direction during
motion aftereffects results from local vector averaging of the co-
localized motion-direction signals induced by adaptation’’ (Vid-
nyánszky, Blaser, & Papathomas, 2002, Abstract, emphasis added).
A straightforward demonstration of this is that adaptation to bivec-
torial transparent motion normally leads to univectorial non-trans-
parent MAE in the direction opposite to the vector sum of the
adapting directions (e.g., Verstraten, Fredericksen, & van de Grind,
1994). This phenomenon reveals the inadequacy of the classic oppo-
nent-process (or ratio) model (Sutherland, 1961), which attributes
the MAE to an adaptation-induced imbalance between the re-
sponses of the units tuned to the adapted direction and to its oppo-
site. This problem motivated the development of the distribution
shift model (Mather, 1980) and its successor, the automatic gain-
control model (Grunewald, 1996; Grunewald & Lankheet, 1996;
van de Grind, Lankheet, & Tao, 2003; van de Grind, van de Smagt,
& Verstraten, 2004). The details of these models are beyond the
scope of this article (see Mather & Harris, 1998; van de Grind, Lank-
heet, & Tao, 2003, for reviews). It suffices for our purposes that they
all agree that the MAE involves multiple channels and that the mu-
tual (dis)inhibition among them plays a major role. In the case of
8 Indeed, no such modifications have been reported in single-cell recordings to
date, except that (Ghose, Yang, & Maunsell, 2002) found slightly fewer V1 neurons
whose optimal orientation was near the trained orientation. This resulted in a small
but significant decrease in the V1 population response to the trained orientation at the
trained location compared to a location in the opposite, untrained hemifield.
bivectorial adaptation, the inhibitory interactions fuse the afteref-
fect into one single direction. Now, the RM hypothesis postulates
changes in the channels flanking the discrimination boundary. Gi-
ven the stimulus-specificity of perceptual learning, the response
properties of these flanker channels should be different from those
of the surrounding channels. This two-prong modification pattern
induced by training is qualitatively similar to the two-prong sup-
pression pattern induced by bivectorial adaptation. This gives rea-
son to expect that the strength of the (univectorial) MAE in the
direction opposite to the trained boundary would differ from the un-
trained control. This also suggests an interesting follow-up experi-
ment that uses bivectorial transparent motion (e.g., h ± 25�) for the
adapting stimulus on MAE trials.

In summary, the first alternative interpretation of our results
does not seem convincing upon close examination. It appears that
our two experimental tasks did engage highly overlapping popula-
tions of neurons, including the lateral connections between them.
It must be acknowledged that the main conclusions of this article de-
pend on this conjecture and that further research is needed to clarify
the role of the lateral connectivity. Note also that the same connec-
tivity is exactly the plasticity site proposed by the RM hypothesis.

The other alternative interpretation disputes the second premise
of our reasoning. Why should we expect that modifying these repre-
sentations would cause detectable MAE changes? Suppose, for the
sake of argument, that there really are common plasticity mecha-
nisms for adaptation and learning (Teich & Qian, 2003). Then the
MAE posttest in the trained direction reflects the combined effect
of learning plus adaptation, whereas that in the control direction re-
flects the effect of adaptation alone. If the adaptation effect were
much stronger than the learning effect, adaptation plus learning
would not differ significantly from adaptation alone. This would ex-
plain the observed lack of significant differences in the MAE data.

To answer this question we need to compare the effects of adap-
tation and learning. We use the change in discrimination threshold
as common currency to estimate the approximate relative strengths
of these two factors. Recall that the learning index for the average d0

data is �55%. To a first approximation (cf. Fine & Jacobs, 2002), this
corresponds to a commensurate decrease in discrimination thresh-
old. On the other hand, the two studies that measured the effect of
adaptation on motion discrimination (Hol & Treue, 2001; Phinney,
Bowd, & Patterson, 1997) report�60% increases in the fine discrim-
ination thresholds for the flanker directions (and up to 20% decrease
for the adapted direction). Note that the adaptation protocols in
these studies were much stronger than ours. Phinney, Bowd, and
Patterson (1997), for example, used an initial adaptation period of
5 min followed by top-up periods of 10 s interspersed between the
discrimination trials. In contrast, our adaptation protocol was cali-
brated to avoid ceiling and floor effects, and included reset periods
at the end of each trial. Our adaptation effects are thus probably
smaller than 60%. Still, a conservative estimate is that the behavioral
effects of adaptation and learning have approximately equal
strength. This casts serious doubt on the second alternative interpre-
tation of our results.

In conclusion, while we cannot rule out the possibility that a
small amount of representation modification did occur but went
undetected, our experimental technique seems powerful enough
to rule out modifications that could account for a non-trivial por-
tion of the large behavioral improvement. Most of the increase in
d0 (and diffusion drift rate) apparently stems from some other plas-
ticity mechanism(s).

This conclusion agrees with the results of a recent study (Law &
Gold, 2008) that recorded from approximately 250 individual MT
neurons from two monkeys before and during extensive training
on a motion direction-discrimination task. Despite dramatic
improvements in the behavioral thresholds, no significant changes
in firing rates or tuning properties were observed in the MT sample,
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contrary to the prediction of the RM hypothesis. To our knowledge,
Law and Gold (2008) is the only single-cell recording study of mo-
tion perceptual learning, but there are five similar studies of orienta-
tion-discrimination learning (Crist, Li, & Gilbert, 2001; Ghose, Yang,
& Maunsell, 2002; Raiguel, Vogels, Mysore, & Orban, 2006; Schoups
et al., 2001; Yang & Maunsell, 2004). One of them (Schoups et al.,
2001) found modest changes in V1 but this result did not replicate
in two subsequent attempts (Ghose, Yang, & Maunsell, 2002, 2004.
Two studies Raiguel et al., 2006; Yang & Maunsell, 2004) found
changes in area V4. While stronger than those in V1, they were still
insufficient to account for the massive behavioral improvements
(see Petrov, Dosher, & Lu, 2005; Raiguel et al., 2006, for reviews).
Again, these data seem inconsistent with the RM hypothesis.

The selective reweighting (SRW) hypothesis, on the other hand,
offers a straightforward and natural account. It attributes the
behavioral improvement to synaptic plasticity in the read-out con-
nections to higher areas. The pattern of activation (or the tuning
properties) in early representational areas such as V1, V2, or MT
is not expected to change. Rather, such changes are predicted for
higher areas, particularly those involved in determining the re-
sponse. This is precisely the pattern observed by Law and Gold
(2008)—no significant changes in MT coupled with pronounced
changes in LIP, a sensory-motor area. Moreover, the changes in
LIP accumulated as learning progressed and their time course cor-
related with the time course of the behavioral improvement (Law
& Gold, 2008). A neural network model accounted for the detailed
neurophysiological recordings in terms of selective reweighting of
the connections between MT and LIP (Law & Gold, 2009). A closely
related model had been developed on the basis of human behav-
ioral data (Dosher & Lu, 1998, 1999; Lu, Liu, & Dosher, 2010; Pet-
rov, Dosher, & Lu, 2005, 2006; Sotiropolous, Seitz, & Seriès, 2011;
Vaina, Sundareswaran, & Harris, 1995).

Our present data lends further support to the SRW hypothesis.
On this account, the d0 learning curves in Figs. 2 and 4 stem from
selective reweighting of the read-out connections. Areas V1, V2,
and MT do not change and neither does the motion aftereffect.
The signal-to-noise ratio of the sensory input to the decision-mak-
ing areas does change, however, because task-relevant inputs gain
importance, whereas task-irrelevant inputs lose it (Petrov, Dosher,
& Lu, 2005). This accounts for the twofold increase in the drift rate
parameter of the diffusion-model fit to the RT data (Petrov, Van
Horn, & Ratcliff, 2011). The MAE duration is not affected by the
discrimination practice because it relies on a different set of
read-out connections, as discussed above. These non-overlapping
read-outs explain the task specificity of the learning effect.

To our knowledge, the present result is the first demonstration
that MAE changes little (or not at all) after practicing a direction-dis-
crimination task. There is one prior study (Vidnyánszky & Sohn,
2005) that did find significant MAE changes after practicing an unre-
lated task. Vidnyánszky and Sohn (2005) aimed to investigate the ef-
fect of practice on the efficiency of attentional selection. To that end,
they constructed bivectorial transparent motion displays in which
red dots moved horizontally and green dots moved vertically (or vice
versa). The observers were instructed to attend one of the motion
planes and ignore the other. The task was to detect brief increases
of the attended dot population’s luminance. The MAE duration
was measured before and after practice on the luminance task. Four
of the six participants showed significant decreases in the MAE
evoked by the motion signal which was neglected during the seven
practice sessions. Vidnyánszky and Sohn (2005, Abstract) concluded
that ‘‘attentional suppression of task-irrelevant stimuli becomes
more efficient with practice.’’ The effect size varied between 20%
and 70% across the four observers. This indicates that MAE duration
is a sensitive measure that can be affected by practice manipula-
tions. Our experiment had more than enough statistical power to de-
tect a MAE change of this magnitude.
In conclusion, the present study establishes a new empirical
constraint on theories of perceptual learning. Any model of motion
direction-discrimination learning in particular must be able to pro-
duce 55% d0 improvement (and 99% drift-rate improvement, Petrov,
Van Horn, & Ratcliff, 2011) with less than 10% change in either sta-
tic or dynamic MAE. The selective reweighting hypothesis predicts
this pattern, whereas it poses a great challenge to the representa-
tion modification hypothesis.
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