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Gabor targets embedded in contexts of filtered noise
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Learning curves for the three target contrast levelsThe orientation specificity of perceptual learning suggests a plasticity site 
having units tuned for orientation: V1, V2, V4. Even if learning is localized to 
these early areas, there still are at least two distinct possibilities as to the under--
lying mechanism. The representation enhancement hypothesis explains percep--
tual learning in terms of rectruitment of new units, sharpening of tuning curves, 
and/or any other changes that improve the signal-to-noise ratio of the represen--
tations. The selective reweighting hypothesis on the other hand explains it in 
terms of changes in the strength of the "read-out" connections to higher task-
specific areas (Dosher & Lu, 1998). Both hypotheses are equally consistent 
with the observed stimulus specificity of learning.

There is neurophysiological evidence that the receptive field properties in V1 and 
V2 in adult monkeys do not change (or change but a little) as a result of non-
invasive practice alone (Crist et al., 2001; Ghose et al., 2002; Schoups et al., 
2001). Representation enhancement thus seems insufficient to account for the 
marked improvement in performance observed in all three studies.
Psychophysical demonstr-ations of task specificity in perceptual learning also pose 
challenges to the representation enhancement hypothesis (Fahle, 1997; Christ et 
al., 2001). The tasks used in these studies, however, tend to engage disjoint as--
pects of the stimulus representation and hence do not provide a conclusive test.

Thirteen observers were instructed to ignore the background and discriminate 
whether the Gabor is oriented to the left (-10o) or right (+10o) from the vertical. 
The stimuli were presented for 75 msec at two equiprobable locations centered 
either above or below fixation (+/-5 deg.vis.ang). The stimuli were rendered on 
a 64x64 grid subtending ~2.9 deg. vis. angle; average luminance L0=15 cd/m2.
There were 8 sessions on separate days, 4 blocks per day. Each block consisted 
of 300 trials in an orthogonal factorial design: 2 Gabor orientations x 3 Gabor 
contrasts x 2 retinal locations. The background context was stationary within 
blocks and manipulated across blocks according to the counterbalanced ABAB 
schedule shown above. Auditory feedback was given on each trial.

The dependent variable is the z-transformed probability correct and the asso--
ciated d'. Each probability is estimated from 50 observations counterbalanced 
across the two retinal locations. The z-transformed values are then averaged 
across subjects. The independent variables are Block, Context (embedded 
within Block), Contrast, and Congruence. 
A congruent stimulus is one in which the orientation of the Gabor target is 
consistent with the predominant orientation of the background noise.
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HAHW = 0.2 = tan 11.3o

The filter transfer function 
is a cone in Fourier space

Cross-section through 
any spatial frequency

Spectral properties of the stimuli in Context L

The spatial frequency of the Gabor targets is 2 cycles/degree. The background 
noise introduces additional variability and elevates the mean spectral power in a 
cone of orientations depending on context. Both left and right Gabors are present 
in each context and hence the region in orientation space between -45o and +45o 
is activated throughout the experiment.
It is difficult to conceive of any mechanism for representational recruitment or 
sharpening that would be affected by this context manipulation.

Summary of the Experimental Results
* Training improves the identification performance in all conditions.
* The absolute discriminability levels depend strongly on the target contrast.
* The temporal dynamics appears largely independent of contrast.
* The accuracy drops temporarily whenever the context changes (switch cost).
* The switch cost seems to persist for at least 5 switches and 9600 trials.
* The identificaiton accuracy for congruent stimuli tends to decrease slightly
   when the target contrast increases!
* A small (57% vs. 43%) but persistent response asymmetry favors the
   background orientation.
* There is sequential assimilation towards the previous stimulus and response.
* The response times mirror most patterns in the accuracy data.

The three learning curves seem to have identical dynamics: a "main" component 
that depends only on the global time T and a superimposed "switch cost" that 
depends only on the time since last context switch ts. The two components have 
different time constants: τ=10 and τs=1.2 blocks, respectively. The initial d' for 
each Gabor contrast is approximately one-half (g=0.47) of the corresponding 
asymptote: D0.245=1.2, D0.160=1.9, D0.106=2.4.

Main component Switch cost

Importantly, each switch of the background context incurs a temporary decre--
ment in performance. The magnitude of this "switch cost" is approximately 40% 
of the overall learning effect (s=0.18=0.40g) and does not seem to diminish 
even after 9600 trials and 5 consecutive switches.
This persistent, context-induced switch cost cannot be accounted for by the 
representation enhancement hypothesis.

For context-congruent targets, accuracy (z-transformed probability correct) 
paradoxically decreases slightly with increasing Gabor contrast; for incongru--
ent targets, it increases substantially with Gabor contrast.

* Orientation- and Frequency-Selective Representations. Visual images are 
represented as patterns of activity over a population of representational units 
tuned for orientation and spatial frequency.
* Contrast Gain Control. Due to lateral and/or shunting inhibition, the activa--
tions of the units are interdependent and vary as saturating non-linear functions 
of the stimulus contrast (Heeger, 1992).
* Weighted decision units. The response ("Left" or "Right") is determined by a 
population of decision units. Each decision unit receives inputs, directly or in--
directly, from the representational units.  The effective weight of each represen--
tational unit measures the strength of its influence on a given decision unit.
* Incremental Error-Driven Re-weighting. Perceptual learning occurs through 
changes in the effective weights of the connections (direct or indirect) between 
the representational and decision units (Dosher & Lu, 1998). Thus, learning can 
be both stimulus- and task-specific. All changes are incremental and tend to 
reduce the discrepancy between the stimulus-induced and the task-prescribed 
activations over the decision units.
* Intrinsic variability. The processing units throughout the system are noisy 
and prone to various inefficiencies and fluctuations.

The model takes grayscale images as inputs and produces binary responses as 
outputs. It is implemented as two separate parts as indicated in the Figure above.
The representation subsystem computes the internal representation of the input 
image. It is implemented in MATLAB and produces a matrix of 7x5 activations 
encoding the (normalized) energy at selected orientations and frequencies. The 
tuning properties of the individual representational elements (or "channels") are 
informed by the neurophysiology of the early visual areas.
The model is intended as an existence proof that the selective reweighting hypo--
thesis is sufficient to account for all patterns in our data set, including the trial-
by-trial dynamics of learning, the persistent switch costs, and the congruence 
effects. The internal representations do not change at all. All learning happens 
via selective reweighting of the "read-out" connections highlighted in the Figure.
The learning and decision-making subsystem is implemented as a single-layer 
perceptron, which is a simple instantiation of the general principles above. The 
weights are updated by a biologically plausible error-correcting learning rule. 

Criterion Control

Weight Dynamics

All information contained in the stimulus repres-entation 
converges on the decision unit. Prior knowledge is encoded 
in the initial weight vector: w=-0.16 and +0.16 for all 
"left" and "right" orientations, respectively. Given that the 
Gabor target activates a restricted frequency band, not all 
representation units are equally predictive of the correct 
response as indicated by the feedback. The identification 
accuracy can be improved by increasing the weights of the 
task-correlated units and decreasing the weights of the un--
correlated ones. This is accomplished incrementally by the 
contrastive Hebbian learning rule:

Task Analysis
The learning algorithm tracks the correlations between the 
representation units and the desired output. An approximate 
way to estimate these correlations is to average the rep-re-senta--
tions of all "left" stimuli (top two panels in the Figure) and sub--
tract it from the average of all "right" stimuli (middle panels).
The channels clobbered by the back-ground noise are less 
predictive than their counterparts across the midline. This leads 
to "off-channel looking" and explains the inverse relationship 
between contrast and accuracy for congruent stimuli. Moreover, 
the optimal weight vectors in the two contexts are not the same. 
This asymmetry causes persistent switch costs as weights op--
timized in one background must be re-optimized in the other.

∆i = aio+ - aio-

∆wi ~ [∆i]+(1-wi) + [∆i]-(wi+1)
The error on a trial is estimated by the difference (o+-o-), 
where o- and o+ are the activation levels of the decision 
unit before and after feedback is provided, respectively. The 
weights are then updated in the direction that reduces the 
error. The magnitude of the change ∆wi of each individual 
weight is scaled by the activation ai of the corresponding 
representation unit. This can be accomplished in a bio--
logically plausible way by a sequence of Hebbian  and anti-
Hebbian updates according to the first equation above.
Soft weight bounding ensures that all weights remain 
between -1 and +1 (O'Reilly & Munakata, 2000).

The present experiment is explicitly designed to use the same target stimuli, 
and hence presumably the same representational units, throughout. The task 
is also kept the same---orientation discrimination of peripheral Gabor targets.
The targets are embedded in contexts of filtered noise whose predominant 
orientation alternates across epochs according to a non-stationary schedule:

Learning is a process that detects statistical regularities over time. Non-
stationary environments constitute "moving targets" that challenge the learn--
ing system, thereby probing its internal mechanisms.

The incremental errror-correcting algorithm predicts the intermediate- and long-
term dynamics of perceptual learning very well. It accounts for the gradual im--
provement over the course of days and for the switch costs over the course of 
blocks. It also accounts for the absolute discriminability levels at all target con--
trasts and for the counterintuitive contrast-by-congruence interaction.
The d' levels are determined by the signal-to-noise ratios, which in turn are 
determined by the relative weighting of the representational features. The error-
correcting mechanism outlined above is necessary and sufficient to reproduce 
all d' profiles in the data. It cannot, however, account for the rapid strategically 
guided criterion control suggested by the z-probability profiles.
The model has a mechanism for explicit criterion control that avoids excessive 
disproportions in the response frequencies. The model maintains an exponen--
tially discounted running average of its previous responses, counting "Left" as  
-1 and "Right" as +1, respectively. If the average deviates too far from zero in 
either direction, it triggers a correction of the decision criterion. For con--
sistency, it also introduces a slight asymmetry in the teaching signal.
To illustrate, suppose the context has just switched from R to L. The model 
generates a short sequence of predominantly "Left" re-sponses. This triggers an 
abrupt resetting of the decision criterion to a predefined negative value, thereby 
facilitating the "Right" response and equilibrating the response frequencies.

Perceptual learning is investigated both experi--
mentally and via a detailed mechanistic model. 
The stimuli and the task remain fixed at all times. 
Non-stationary contexts and multiple contrast 
levels generate a rich set of empirical constraints.
The performance gradually improves with prac--
tice, with context-induced switch costs that persist 
for at least 5 switches and 9600 trials. For 
congruent stimuli, accuracy paradoxically de--
creases slightly with increasing Gabor contrast.
A computational model accounts for all these 
results. It is broadly consistent with the neuro--
physiology of the early visual areas. The stimuli 
are represented as contrast-normalized patterns of 
activity over a population of orientation and  
frequency tuned units. In a stong test of the select--
ive reweighting hypothesis, the representations are 
fixed at all times (Dosher & Lu, 1998). Learning 
occurs only in the "read-out" links to the decision 
unit by an incremental error-correcting algorithm.

Task-correlated units gain strength while irrelevant 
frequencies and orientations are suppressed, 
producing a gradual learning curve. The optimal 
weight vectors discount the noisy channels in each 
context ("off-channel looking"). If the background 
shifts abruptly, the system suffers a switch cost as 
it works with suboptimal weights until it readapts. 
The cost is transient but appears consistently after 
each switch.
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